Application of Earth Pigments in Cycloolefin Copolymer: Protection against Combustion and Accelerated Aging in the Full Sunlight Spectrum
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
3. Results
3.1. Photostability
3.2. Thermal Stability and Flammability
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Compound | ∆E | ||||
---|---|---|---|---|---|
100 h | 200 h | 300 h | 400 h | 500 h | |
COC | 0.50 | 0.56 | 0.60 | 0.64 | 0.70 |
COC/HM | 0.20 | 0.23 | 1.00 | 1.30 | 1.50 |
COC/GO | 0.30 | 0.55 | 0.56 | 0.60 | 0.66 |
COC/IO | 0.60 | 1.00 | 1.10 | 1.20 | 1.30 |
COC/RO | 0.20 | 0.50 | 0.60 | 0.65 | 0.70 |
COC/BO | 0.40 | 0.80 | 2.50 | 3.59 | 5.32 |
COC/PU | 0.50 | 1.20 | 1.67 | 1.86 | 1.92 |
Compound | CI | ||||
---|---|---|---|---|---|
100 h | 200 h | 300 h | 400 h | 500 h | |
COC | 0.03 | 0.04 | 0.08 | 0.23 | 0.40 |
COC/HM | 0.00 | 0.00 | 0.15 | 0.18 | 0.23 |
COC/GO | 0.00 | 0.01 | 0.10 | 0.13 | 0.15 |
COC/IO | 0.00 | 0.07 | 0.10 | 0.14 | 0.27 |
COC/RO | 0.00 | 0.01 | 0.02 | 0.09 | 0.11 |
COC/BO | 0.01 | 0.10 | 0.21 | 0.49 | 0.56 |
COC/PU | 0.03 | 0.04 | 0.06 | 0.22 | 0.27 |
References
- Garcia, A.; Losar, M.; Calbo, J.; Tena, M.A.; Monros, G. Low-toxicity red ceramic pigments for porcelainised stoneware from lanthanide-cerianite solid solutions. Green Chem. 2001, 3, 238–242. [Google Scholar] [CrossRef]
- Tesitelova, K.; Sulcova, P. Synthesis and study of Bi2Ce2O7 as inorganic pigment. J. Therm Anal Calorim. 2016, 125, 1047–1052. [Google Scholar] [CrossRef]
- Furukawa, S.; Masui, T.; Imanaka, N. Synthesis of new environment-friendly yellow pigments. J. Alloys Compd. 2006, 418, 255–258. [Google Scholar] [CrossRef]
- Marzec, A.; Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Szynkowska, M.I.; Zaborski, M. Characteristics of hybrid pigments made from alizarin dye on mixed oxide host. Materials 2019, 12, 360. [Google Scholar] [CrossRef]
- Kohno, Y.; Totsuka, K.; Ikoma, S.; Yoda, K.; Shibata, M.; Matsushima, R.; Tomita, Y.; Maeda, Y.; Kobayashi, K. Photostability enhancement of anionic natural dye by intercalation into hydrotalcite. J. Colloid Interface Sci. 2009, 337, 117–121. [Google Scholar] [CrossRef]
- Girdthep, S.; Sirirak, J.; Daranarong, D.; Daengngern, R.; Chayabutra, S. Physico-chemical characterization of natural lake pigments obtained from Caesalpinia Sappan Linn. and their composite films for poly(lactic acid)-based packaging material. Dyes Pigments 2018, 157, 27–39. [Google Scholar] [CrossRef]
- Marzec, A.; Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Zaborski, M. Characterization and structure-property relationships of organic-inorganic hybrid composites based on aluminum-magnesium hydroxycarbonate and azo chromophore. Molecules 2019, 24, 880. [Google Scholar] [CrossRef]
- Seentrakoon, B.; Junhasavasdikul, B.; Chavasiri, W. Enhanced UV-protection andantibacterial properties of natural rubber/rutileeTiO2 nanocomposites. Polym. Degrad. Stab. 2013, 98, 566–578. [Google Scholar] [CrossRef]
- Konta, J. Clay and man: Clay raw materials in the service of man. Appl. Clay Sci. 1995, 10, 275–335. [Google Scholar] [CrossRef]
- Sreeram, K.J.; Kumeresan, S.; Radhika, S.; Sundar, V.J.; Muralidharana, C.; Nari, B.U.; Ramasami, T. Use of mixed rare earth oxides as environmentally benign pigments. Dyes Pigments 2008, 76, 243–248. [Google Scholar] [CrossRef]
- Abbasi, A.; Ghanbari, D.; Salavati-Niasari, M.; Hamadanian, M. Photo-degradation of methylene blue: Photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater. Sci. Mater. Electron. 2016, 27, 4800–4809. [Google Scholar] [CrossRef]
- Raj, A.K.; Rao, P.P.; Sreena, T.S.; Thara, T.A. Pigmentary colors from yellow to red in Bi2Ce2O7 by rare earth ion substitutions as possible high NIR reflecting pigments. Dyes Pigments 2019, 160, 177–187. [Google Scholar] [CrossRef]
- Laskowska, A.; Marzec, A.; Boiteux, G.; Zaborski, M.; Gain, O.; Serghei, A. Investigations of Nitrile Rubber Composites Containing Imidazolium Ionic Liquids. Macromol. Symp. 2014, 341, 18–25. [Google Scholar] [CrossRef]
- Camlibel, N.O.; Arik, B.; Avinc, O.; Yavas, A. Antibacterial, UV protection, flame retardancy and coloration properties of cotton fabrics coated with polyacrylate polymer containing various iron ores. J. Text. Inst. 2018, 109, 1424–1433. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene. SpringerPlus 2013, 2, 398. [Google Scholar] [CrossRef]
- Herzig, E.; Johlitz, M.; Lion, A. Ageing Phenomena in Polymers: A Short Survey. In Adhesive Joints: Ageing and Durability of Epoxies and Polyurethanes; Possart, W., Brede, M., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2018; pp. 167–204. [Google Scholar]
- Turton, T.J.; White, J.R. Effect of stabilizer and pigment on photo-degradation depth profiles in polypropylene. Polym. Degrad. Stab. 2001, 74, 559–568. [Google Scholar] [CrossRef]
- Saron, C.; Falisberti, M.I.; Zulli, F.; Giordano, M. Influence of diazo pigment on polycarbonate photodegradation. J. Appl. Polym. Sci. 2008, 107, 1071–1079. [Google Scholar] [CrossRef]
- Anna, P.; Bertalan, G.; Marosi, G.; Ravadits, I.; Maatoug, M.A. Effect of interface modification on the photo-stability of pigmented polyethylene films. Polym. Degrad. Stab. 2011, 73, 463–466. [Google Scholar] [CrossRef]
- Haug, S.P.; Andres, C.J.; Moore, B.K. Color stability and colorant effect on maxillofacial elastomers. Part III: Weathering effect on color. J. Prosthet. Dent. 1999, 81, 431–438. [Google Scholar] [CrossRef]
- Kiat-amnuay, S.; Lemon, J.C.; Powers, J.M. Effect of opacifiers on color stability of pigmented maxillofacial silicone A-2186 subjected to artificial aging. J. Prosthet. Dent. 2002, 11, 109–116. [Google Scholar] [CrossRef]
- Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater Res. 2009, 12, 1–39. [Google Scholar] [CrossRef]
- Rajadurai, A. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite. Appl. Surf. Sci. 2016, 384, 99–106. [Google Scholar]
- Brocca, D.; Arvin, E.; Mosbaek, H. Identification of organic compounds migrating from polyethylene pipelines into drinking water. Water Res. 2002, 36, 3675–3680. [Google Scholar] [CrossRef]
- Masek, A.; Latos, M.; Piotrowska, M.; Zaborski, M. The potential of quercetin as an effective natural antioxidant and indicator for packaging materials. Food Packag. Shelf Life 2018, 16, 51–58. [Google Scholar] [CrossRef]
- Marzec, A.; Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Zaborski, M. New organic-inorganic hybrids as multifunctional additives to improve ethylene-norbornene (EN) composite stability. Polym. Degrad. Stab. 2019, 160, 110–119. [Google Scholar] [CrossRef]
- Marzec, A.; Szadkowski, B. Improved aging stability of ethylene-norbornene composites filled with lawsone-based hybrid pigment. Polymers 2019, 11, 723. [Google Scholar] [CrossRef] [PubMed]
- Masłowski, M.; Miedzianowska, J.; Strzelec, K. Natural rubber biocomposites containing corn, barley and wheat straw. Polym. Test. 2017, 63, 84–91. [Google Scholar] [CrossRef]
- Kaelble, D.H. Dispersion-polar surface tension properties of organic solids. J. Adhes. 1970, 2, 66–81. [Google Scholar] [CrossRef]
- Marzec, A.; Szadkowski, B.; Kuśmierek, M.; Rogowski, J.; Maniukiewicz, W.; Rybiński, P.; Zaborski, M. Impact of organic-inorganic color additive on the properties of ethylene-norbornene copolymer. Polym. Test. 2020, 82, 106290. [Google Scholar] [CrossRef]
- Schmidt, H.; Twarowska-Schmidt, K. Effect of pigments on the photooxidative degradation of polypropylene fibers. Fibres Text. East. Eur. 1997, 5, 51–52. [Google Scholar]
- Klemchuk, P.P. Influence of pigments on the light stability of polymers: A critical review. Polym. Photochem. 1982, 3, 1–27. [Google Scholar] [CrossRef]
- Allen, N.S. Photofading and light stability of dyed and pigmented polymers. Polym. Degrad. Stab. 1994, 44, 357–374. [Google Scholar] [CrossRef]
- Stark, N.M.; Matuana, L.M. Influence of photostabilizers on wood flour–HDPE composites exposed to xenon-arc radiation with and without water spray. Polym. Degrad. Stab. 2006, 91, 3048–3056. [Google Scholar] [CrossRef]
- Du, H.; Wang, W.; Wang, Q.; Zhang, Z.; Sui, S.; Zhang, Y. Effect of pigments on the UV degradation of wood-flour/HDPE composites. J. Appl. Polym. Sci. 2010, 118, 1068–1076. [Google Scholar] [CrossRef]
- Du, W.; Xu, Y.; Wang, Y. Photoinduced degradation of orange-II on different iron (hydro) oxides in aqueous suspension: Rate enhancement on addition of hydrogen peroxide, silver nitrate, and sodium fluoride. Langmuir 2008, 24, 175–181. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A.; Wolski, K. Innovative cellulose fibres reinforced ethylene-norbornene copolymer composites of an increased degradation potential. Polym. Degrad. Stab. 2019, 159, 174–183. [Google Scholar] [CrossRef]
- Masek, A.; Chrzescijanska, E.; Diakowska, K.; Zaborski, M. Application of β-carotene, a natural flavonoid dye, to polymeric materials as a natural antioxidant and determination of its characteristics using cyclic voltammetry and FTIR spectroscopy. Int. J. Electrochem. Sci. 2015, 10, 3372–3386. [Google Scholar]
- Marzec, A.; Laskowska, A.; Boiteux, G.; Zaborski, M.; Gain, O.; Serghei, A. Study on weather aging of nitrile rubber composites containing imidazolium ionic liquids. Macromol. Symp. 2014, 342, 25–34. [Google Scholar] [CrossRef]
- Marzec, A.; Chrześcijańska, E.; Boruszczak, Z.; Zaborski, M.; Laskowska, A.; Boiteux, G.; Gain, O. Novel dyed ethylene-norbornene composites with enhanced aging resistance. Polym. Degrad. Stab. 2016, 123, 137–145. [Google Scholar] [CrossRef]
- Lyon, R.E.; Walters, R.N.; Stoliarov, S.I. Screening flame retardants for plastics using microscale combustion calorimetry. Polym. Eng. Sci. 2007, 41, 1501–1510. [Google Scholar] [CrossRef]
- Lu, H.; Wilkie, C.A. Fire performance of flame retardant polypropylene and polystyrene composites screened with microscale combustion calorimetry. Polym. Advan. Technol. 2011, 22, 14–21. [Google Scholar] [CrossRef]
- Pająk, A.; Rybiński, P.; Janowska, G.; Kucharska-Jastrząbek, A. The thermal properties and the flammability of pigmented elastomeric materials. J. Thermal. Anal. Calorim. 2014, 117, 789–798. [Google Scholar] [CrossRef]
- Lin, M.; Li, B.; Li, Q.; Li, S.; Zhang, S. Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. J. Appl. Polym. Sci. 2011, 121, 1951–1960. [Google Scholar] [CrossRef]
- Barbot’ko, S.L.; Naumov, I.S.; Vol’nyi, O.S.; Alifanov, E.V. The effect of pigments on the flammability characteristics of a rubber compound based on methylovinylsiloxane rubber. Int. Polym. Sci. 2017, 44, 41–46. [Google Scholar]
- Morgan, A. A review of transition metal-based flame retardants: Transition metal oxide/salts, and complexes. In Fire and Polymers V; Wielkie, C.A., Morgan, A., Nelson, G.L., Eds.; American Chemical Society: Washington, DC, USA, 2009; pp. 312–328. [Google Scholar]
Name | Abbreviation | Supplier | Chemical Composition |
---|---|---|---|
Hematite * | HM | Kremer Pigments | Fe2O3 |
Gold ochre * | GO | Kremer Pigments | Fe2O3, SiO2, Al2O3, CaCO3 |
Iron ochre * | IO | Kremer Pigments | Fe2O3·H2O, Fe2O3, Al2O3, CaCO3, SiO4 |
Red ochre * | RO | Kremer Pigments | Fe2O3, SiO2, Al2O3 |
Brown ochre * | BO | Kremer Pigments | Fe2O3, Al2O3, Mn2O3, SiO4, CaCO3 |
Puzzola | PU | Kremer Pigments | Mix of red earths containing Sb, As, Ba, Be, Pb, Cd, Cr, Co, Cu, Mn, Ni, Os, Hg, Se, Au, Tl, V, Sn, Zn. |
Composite Name | TS (MPa) | SE100% (MPa) | EB (%) | |
---|---|---|---|---|
COC | Before aging | 40.5 | 9.5 | 802 |
After aging | 12.7 | 10.3 | 415 | |
COC/HM | Before aging | 41.5 | 9.4 | 819 |
After aging | 40.2 | 8.7 | 801 | |
COC/GO | Before aging | 40.4 | 9.8 | 809 |
After aging | 39.9 | 8.5 | 771 | |
COC/IO | Before aging | 41.4 | 9.3 | 831 |
After aging | 21.3 | 8.8 | 556 | |
COC/RO | Before aging | 42.4 | 9.7 | 859 |
After aging | 34.4 | 8.6 | 717 | |
COC/BO | Before aging | 41.7 | 9.4 | 807 |
After aging | 15.2 | 10.2 | 410 | |
COC/PU | Before aging | 41.7 | 9.7 | 826 |
After aging | 39.0 | 8.6 | 822 |
Composite Name | T05% (°C) | T20% (°C) | T50% (°C) |
---|---|---|---|
Argon atmosphere | |||
COC | 398 | 442 | 466 |
COC/HM | 401 | 444 | 468 |
COC/GO | 400 | 446 | 470 |
COC/RO | 398 | 442 | 465 |
COC/PU | 400 | 449 | 471 |
Air atmosphere | |||
COC | 359 | 406 | 431 |
COC/HM | 370 | 422 | 462 |
COC/GO | 365 | 415 | 460 |
COC/RO | 368 | 411 | 448 |
COC/PU | 359 | 412 | 459 |
Compound | HRR (W/g) | THR (kJ/g) | HRC (J/gK) |
---|---|---|---|
COC | 1857 ± 93 | 79 ± 4 | 1851 ± 93 |
COC/HM | 1839 ± 93 | 64 ± 3 | 1845 ± 92 |
COC/GO | 1685 ± 84 | 49 ± 3 | 1620 ± 81 |
COC/IO | 1526 ± 76 | 43 ± 2 | 1530 ± 77 |
COC/RO | 1633 ± 82 | 47 ± 2 | 1599 ± 80 |
COC/BO | 2210 ± 111 | 67 ± 3 | 2188 ± 109 |
COC/PU | 1843 ± 92 | 61 ± 3 | 1853 ± 93 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szadkowski, B.; Kuśmierek, M.; Rybiński, P.; Żukowski, W.; Marzec, A. Application of Earth Pigments in Cycloolefin Copolymer: Protection against Combustion and Accelerated Aging in the Full Sunlight Spectrum. Materials 2020, 13, 3381. https://doi.org/10.3390/ma13153381
Szadkowski B, Kuśmierek M, Rybiński P, Żukowski W, Marzec A. Application of Earth Pigments in Cycloolefin Copolymer: Protection against Combustion and Accelerated Aging in the Full Sunlight Spectrum. Materials. 2020; 13(15):3381. https://doi.org/10.3390/ma13153381
Chicago/Turabian StyleSzadkowski, Bolesław, Małgorzata Kuśmierek, Przemysław Rybiński, Witold Żukowski, and Anna Marzec. 2020. "Application of Earth Pigments in Cycloolefin Copolymer: Protection against Combustion and Accelerated Aging in the Full Sunlight Spectrum" Materials 13, no. 15: 3381. https://doi.org/10.3390/ma13153381
APA StyleSzadkowski, B., Kuśmierek, M., Rybiński, P., Żukowski, W., & Marzec, A. (2020). Application of Earth Pigments in Cycloolefin Copolymer: Protection against Combustion and Accelerated Aging in the Full Sunlight Spectrum. Materials, 13(15), 3381. https://doi.org/10.3390/ma13153381