Performance Characterization of Hot Mix Asphalt with High RAP Content and Basalt Fiber
Abstract
:1. Introduction
2. Materials and Sample Fabrication
2.1. Raw Materials
2.1.1. Basalt Fiber
2.1.2. Asphalt Binder and New Aggregates
2.1.3. RAP Material
2.2. Sample Fabrication
2.2.1. Mixture Gradation Design
2.2.2. Mixing and Compaction
3. Experimental Methods
3.1. Wheel-Tracking Test
3.2. Uniaxial Penetration Test
3.3. Freeze-Thaw Splitting Test
3.4. Low-Temperature Bending Beam Test
3.5. Semicircular Bend Fracture Test
3.6. Indirect Tensile Asphalt Cracking Test
4. Results and Discussion
4.1. Effect of Basalt Fiber on High-Temperature Performance of Asphalt Mixtures with RAP
4.1.1. Wheel-Tracking Test Results
4.1.2. Uniaxial Penetration Test Results
4.2. Effect of Basalt Fiber on Moisture Susceptibility of Asphalt Mixtures with RAP
4.3. Effect of Basalt Fiber on Low-Temperature Performance of Asphalt Mixtures with RAP
4.4. Effect of Basalt Fiber on Cracking Resistance of Asphalt Mixtures with RAP
4.4.1. SCB Fracture Test Results
4.4.2. IDEAL Cracking Test Results
4.5. Performance-Space Diagram Analysis
5. Conclusions
- (1)
- Basalt fiber further enhances the high-temperature performance of asphalt mixtures by increasing both of the dynamic stability and shear stress, despite the stiffening effect caused by RAP. However, shear stress presents a declining trend when RAP content exceeds 40%, indicating a reduction in rutting resistance when excessive RAP material is used.
- (2)
- Basalt fiber improves the indirect tensile strength (ITS) of conditioned and unconditioned samples. Based on the ratio of ITS of the conditioned fiber-reinforced samples when compared with the unconditioned control samples, superior moisture susceptibility of the fiber-reinforced mixtures could be determined, especially for the mixtures with RAP.
- (3)
- Basalt fiber compensates for the stiffening impact caused by RAP at low temperature, subsequently resulting in better low-temperature cracking resistance of asphalt mixtures with RAP.
- (4)
- Basalt fiber not only increases the fracture energy before crack initiation, but also slows down the cracking propagation rate at an intermediate temperature, meaning an overall improvement in intermediate-temperature cracking resistance of asphalt mixtures with RAP.
- (5)
- Based on the “DS-FTS performance-space diagram”, basalt fiber improves both rutting and cracking resistance of asphalt mixtures with RAP simultaneously to a great extent. When basalt fiber is used, mixtures with 30% RAP exhibit comparable performance to control mixtures with 0% RAP, while unqualified mixtures with 50% RAP present a competitive performance to control mixtures with 30% RAP.
- (6)
- Overall, adding basalt fiber can improve the performance of asphalt mixtures with RAP significantly, or increase the RAP content while maintaining the desired performance.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zaumanis, M.; Mallick, R.B. Review of very high-content reclaimed asphalt use in plant-produced pavements: State of the art. Int. J. Pavement Eng. 2015, 16, 39–55. [Google Scholar] [CrossRef]
- Jahangiri, B.; Majidifard, H.; Meister, J.; Buttlar, W.G. Performance evaluation of asphalt mixtures with reclaimed asphalt pavement and recycled asphalt shingles in missouri. Transp. Res. Rec. 2019, 2673, 392–403. [Google Scholar] [CrossRef]
- Rath, P.; Love, J.E.; Buttlar, W.G.; Reis, H. Performance analysis of asphalt mixtures modified with ground tire rubber modifiers and recycled materials. Sustain 2019, 11, 1792. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Roque, R.; Cocconcelli, C.; Bekoe, M.; Lopp, G. Evaluation of cracking performance for polymer-modified asphalt mixtures with high RAP content. Road Mater. Pavement Des. 2017, 18, 450–470. [Google Scholar] [CrossRef]
- Ciampa, D.; Cioffi, R.; Colangelo, F.; Diomedi, M.; Farina, I.; Olita, S. Use of unbound materials for sustainable road infrastructures. Appl. Sci. 2020, 10, 3465. [Google Scholar] [CrossRef]
- National Asphalt Pavement Association. Asphalt Pavement Industry Survey on Recycled Materials and Warm-Mix Asphalt Usage: 2016; Federal Highway Administration: Washington, DC, USA, 2017. [CrossRef] [Green Version]
- Ministry of Transport of China. Outline for the Development of Highway Maintenance Management During the 13th Five-Year Plan Period. 2016. Available online: http://xxgk.mot.gov.cn/jigou/glj/201702/t20170208_2979403.html (accessed on 10 June 2020).
- Yan, Y.; Roque, R.; Hernando, D.; Chun, S. Cracking performance characterisation of asphalt mixtures containing reclaimed asphalt pavement with hybrid binder. Road Mater. Pavement Des. 2019, 20, 347–366. [Google Scholar] [CrossRef]
- Asib, A.S.M.; Romero, P.; Safazadeh, F. An equivalence between methods of aging for determining the low-temperature performance of hot-mix asphalt concrete mixtures containing reclaimed asphalt pavement. Constr. Build. Mater. 2019, 223, 198–209. [Google Scholar] [CrossRef]
- Copeland, A. Reclaimed Asphalt Pavement in Asphalt Mixtures: State of the Practice; Report Number: FHWA-HRT-11-021; Turner-Fairbank Highway Research Center: McLean, VA, USA, 2011. [Google Scholar]
- Huang, B.; Shu, X.; Vukosavljevic, D. Laboratory investigation of cracking resistance of hot-mix asphalt field mixtures containing screened reclaimed asphalt pavement. J. Mater. Civ. Eng. 2011, 23, 1535–1543. [Google Scholar] [CrossRef]
- Zhou, Z.; Gu, X.; Jiang, J.; Ni, F.; Jiang, Y. Fatigue cracking performance evaluation of laboratory-produced polymer modified asphalt mixture containing reclaimed asphalt pavement material. Constr. Build. Mater. 2019, 216, 379–389. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, Q.; Qian, Z.; Wang, X. Evaluating the effects of high RAP content and rejuvenating agents on fatigue performance of fine aggregate matrix through DMA flexural bending test. Materials 2019, 12, 1508. [Google Scholar] [CrossRef] [Green Version]
- Montañez, J.; Caro, S.; Carrizosa, D.; Calvo, A.; Sánchez, X. Variability of the mechanical properties of Reclaimed Asphalt Pavement (RAP) obtained from different sources. Constr. Build. Mater. 2020, 230, 116968. [Google Scholar] [CrossRef]
- Stimilli, A.; Virgili, A.; Canestrari, F.; Bahia, H.U. Estimation of low-temperature performance of recycled asphalt mixtures through relaxation modulus analysis. Cold Reg. Sci. Technol. 2017, 133, 36–45. [Google Scholar] [CrossRef]
- Van Winkle, C.; Mokhtari, A.; Lee, H.D.; Williams, R.C.; Schram, S. Laboratory and field evaluation of HMA with high contents of recycled asphalt pavement. J. Mater. Civ. Eng. 2017, 29, 1–9. [Google Scholar] [CrossRef]
- Majidifard, H.; Tabatabaee, N.; Buttlar, W. Investigating short-term and long-term binder performance of high-RAP mixtures containing waste cooking oil. J. Traffic Transp. Eng. 2019, 6, 396–406. [Google Scholar] [CrossRef]
- Lizárraga, J.M.; Gallego, J. Self-Healing Analysis of Half-Warm Asphalt Mixes Containing Electric Arc Furnace (EAF) Slag and Reclaimed Asphalt Pavement (RAP) Using a Novel Thermomechanical Healing Treatment. Materials 2020, 13, 2502. [Google Scholar] [CrossRef]
- Kuang, D.; Jiao, Y.; Ye, Z.; Lu, Z.; Chen, H.; Yu, J.; Liu, N. Diffusibility enhancement of rejuvenator by epoxidized soybean oil and its influence on the performance of recycled hot mix asphalt mixtures. Materials 2018, 11, 833. [Google Scholar] [CrossRef] [Green Version]
- Majidifard, H.; Tabatabaee, N.; Buttlar, W. Effect of Bio-based Oil on Performance of High-RAP Mixtures. Transp. Res. Board TRB 2018 Annu. Meet. 2018, 7. [Google Scholar] [CrossRef]
- Kuang, D.; Ye, Z.; Yang, L.; Liu, N.; Lu, Z.; Chen, H. Effect of rejuvenator containing dodecyl benzene sulfonic acid (DBSA) on physical properties, chemical components, colloidal structure and micro-morphology of aged bitumen. Materials 2018, 11, 1476. [Google Scholar] [CrossRef] [Green Version]
- Ziari, H.; Moniri, A.; Bahri, P.; Saghafi, Y. The effect of rejuvenators on the aging resistance of recycled asphalt mixtures. Constr. Build. Mater. 2019, 224, 89–98. [Google Scholar] [CrossRef]
- Pan, P.; Kuang, Y.; Hu, X.; Zhang, X. A comprehensive evaluation of rejuvenator on mechanical properties, durability, and dynamic characteristics of artificially aged asphalt mixture. Materials 2018, 11, 1554. [Google Scholar] [CrossRef] [Green Version]
- Behnood, A. Application of rejuvenators to improve the rheological and mechanical properties of asphalt binders and mixtures: A review. J. Clean Prod. 2019, 231, 171–182. [Google Scholar] [CrossRef]
- Jahanbakhsh, H.; Karimi, M.M.; Naseri, H.; Nejad, F.M. Sustainable asphalt concrete containing high reclaimed asphalt pavements and recycling agents: Performance assessment, cost analysis, and environmental impact. J. Clean. Prod. 2020, 244, 118837. [Google Scholar] [CrossRef]
- Mohammed, M.; Parry, T.; Thom, N.; Grenfell, J. Microstructure and mechanical properties of fibre reinforced asphalt mixtures. Constr. Build. Mater. 2020, 240, 117932. [Google Scholar] [CrossRef]
- Slebi-Acevedo, C.J.; Lastra-González, P.; Castro-Fresno, D.; Bueno, M. An experimental laboratory study of fiber-reinforced asphalt mortars with polyolefin-aramid and polyacrylonitrile fibers. Constr. Build. Mater. 2020, 248, 118622. [Google Scholar] [CrossRef]
- Paluri, Y.; Mogili, S.; Mudavath, H.; Pancharathi, R.K. A study on the influence of steel fibers on the performance of Fine Reclaimed Asphalt Pavement (FRAP) in pavement quality concrete. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Su, Z.; Muhammad, Y.; Sahibzada, M.; Li, J.; Meng, F.; Wei, Y.; Zhao, Z.; Zhang, L. Preparation and properties of aminated graphene fiber incorporated modified asphalt. Constr. Build. Mater. 2019, 229, 116836. [Google Scholar] [CrossRef]
- Pirmohammad, S.; Majd Shokorlou, Y.; Amani, B. Influence of natural fibers (kenaf and goat wool) on mixed mode I/II fracture strength of asphalt mixtures. Constr. Build. Mater. 2020, 239, 117850. [Google Scholar] [CrossRef]
- Ziari, H.; Aliha, M.R.M.; Moniri, A.; Saghafi, Y. Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber. Constr. Build. Mater. 2020, 230, 117015. [Google Scholar] [CrossRef]
- Fakhri, M.; Hosseini, S.A. Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion. Constr. Build. Mater. 2017, 134, 626–640. [Google Scholar] [CrossRef]
- Park, K.S.; Shoukat, T.; Yoo, P.J.; Lee, S.H. Strengthening of hybrid glass fiber reinforced recycled hot-mix asphalt mixtures. Constr. Build. Mater. 2020, 258, 118947. [Google Scholar] [CrossRef]
- Li, Z.; Shen, A.; Wang, H.; Guo, Y.; Wu, H. Effect of basalt fiber on the low-temperature performance of an asphalt mixture in a heavily frozen area. Constr. Build. Mater. 2020, 253, 119080. [Google Scholar] [CrossRef]
- Slebi-Acevedo, C.J.; Pascual-Muñoz, P.; Lastra-González, P.; Castro-Fresno, D. A multi-criteria decision-making analysis for the selection of fibres aimed at reinforcing asphalt concrete mixtures. Int. J. Pavement Eng. 2019, 7, 1–17. [Google Scholar] [CrossRef]
- Mukhammadiyeva, G.F.; Karimova, L.K.; Beigul, N.A.; Bakirov, A.B. Peculiarities of air pollution in the production of continuous glass fiber. J. Gig. I. Sanit. 2016, 95, 548–551. [Google Scholar] [CrossRef]
- Slebi-Acevedo, C.J.; Lastra-González, P.; Pascual-Muñoz, P. Mechanical performance of fibers in hot mix asphalt: A review. Constr. Build. Mater. 2019, 200, 756–769. [Google Scholar] [CrossRef]
- Celauro, C.; Praticò, F.G. Asphalt mixtures modified with basalt fibres for surface courses. Constr. Build. Mater. 2018, 170, 245–253. [Google Scholar] [CrossRef]
- Davar, A.; Tanzadeh, J.; Fadaee, O. Experimental evaluation of the basalt fibers and diatomite powder compound on enhanced fatigue life and tensile strength of hot mix asphalt at low temperatures. Constr. Build. Mater. 2017, 153, 238–246. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, D.; Gong, Y.; Zhu, C.; Tao, J.; Wang, W. Laboratory evaluation on performance of eco-friendly basalt fiber and diatomite compound modified asphalt mixture. Materials 2018, 11, 2400. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Shen, A.; Guo, Y.; Li, Z.; Lv, Z. Characterization of asphalt mastics reinforced with basalt fibers. Constr. Build. Mater. 2018, 159, 508–516. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, W.; Gong, Y.; Wang, S.; Yang, S.; Sun, X. Comparative study on the damage characteristics of asphalt mixtures reinforced with an eco-friendly basalt fiber under freeze-thaw cycles. Materials 2018, 11, 2488. [Google Scholar] [CrossRef] [Green Version]
- Tanzadeh, R.; Tanzadeh, J.; Honarmand, M.; Tahami, S.A. Experimental study on the effect of basalt and glass fibers on behavior of open-graded friction course asphalt modified with nano-silica. Constr. Build. Mater. 2019, 212, 467–475. [Google Scholar] [CrossRef]
- Kang, A.; Chen, J.; Huang, M.; Lu, J.; Li, L. Evaluation and classification of reclaimed SBS asphalt aging properties. J. China U. Min. Technol. 2014, 43, 726–730. [Google Scholar]
- Li, B.; Zhang, C.; Xiao, P.; Wu, Z. Evaluation of coarse aggregate morphological characteristics affecting performance of heavy-duty asphalt pavements. Constr. Build. Mater. 2019, 225, 170–181. [Google Scholar] [CrossRef]
- Zhou, F.; Im, S.; Sun, L.; Scullion, T. Development of an IDEAL cracking test for asphalt mix design and QC/QA. Asph. Paving Technol. Assoc. Asph. Paving Technol. Tech. Sess. 2017, 86, 549–577. [Google Scholar] [CrossRef]
- Buttlar, W.G.; Hill, B.C.; Wang, H.; Mogawer, W. Performance space diagram for the evaluation of high- and low-temperature asphalt mixture performance. Road Mater. Pavement Des. 2017, 18, 336–358. [Google Scholar] [CrossRef]
Index | Unit | Value | Standard |
---|---|---|---|
Color | - | Golden brown | Visual inspection |
Specific gravity | g/cm3 | 2.72 | JT/T 776.1 |
Length | mm | 6 | JT/T 776.1 |
Diameter | μm | 16 | GB/T 7690.5 |
Fracture strength | MPa | 2200 | GB/T 20310 |
Elastic modulus | GPa | 90 | GB/T 20310 |
Thermostability (retained Fracture strength) | % | 93 | GB/T 7690.3 |
Elongation at break | % | 2.7 | JT/T 776.1 |
Oil absorption | % | 52 | JT/T 776.1 |
Water absorption | % | 0.1 | JT/T 776.1 |
Index | Unit | Value | Standard |
---|---|---|---|
Penetration at 25 °C | 0.1 mm | 71 | JTG E20 T0604 |
Penetration Index | - | 0.5 | JTG E20 T0604 |
Ductility at 5 °C | cm | 48 | JTG E20 T0605 |
Softening point | °C | 64 | JTG E20 T0606 |
Viscosity at 135 °C | Pa·s | 1.8 | JTG E20 T0625 |
Index | Unit | RAP1 | RAP2 | RAP3 | RAP4 | Average |
---|---|---|---|---|---|---|
Binder content | % | 4.31 | 4.33 | 4.26 | 4.23 | 4.28 |
Penetration at 25 °C | 0.1 mm | 37.7 | 38.5 | 38.5 | 37.9 | 38.2 |
Softening point | °C | 57.5 | 57.2 | 57.3 | 57.9 | 57.4 |
Viscosity at 135 °C | Pa·s | 1.73 | 1.84 | 1.86 | 1.60 | 1.76 |
Index | Neat Asphalt | SBS Modified Asphalt | ||||||
---|---|---|---|---|---|---|---|---|
Viscosity (Pa·s) | η ≤ 1.6 | η ≤ 1.6 | 1.6 < η ≤ 3 | η > 3 | ||||
Penetration (0.1 mm) | P > 30 | 10 < P ≤ 30 | P > 30 | P > 30 | 20 < P ≤ 30 | 10 < P ≤ 20 | 20 < P ≤ 30 | 10 < P ≤ 20 |
Grade | I | II | I | II | III | IV | V | VI |
Sieve Size (mm) | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 |
---|---|---|---|---|---|---|---|---|---|---|
Passing of Combined Aggregate (%) | ||||||||||
Upper limit | 100.0 | 100.0 | 85.0 | 68.0 | 50.0 | 38.0 | 28.0 | 20.0 | 15.0 | 8.0 |
Lower limit | 100.0 | 90.0 | 68.0 | 38.0 | 24.0 | 15.0 | 10.0 | 7.0 | 5.0 | 4.0 |
Mid-Range | 100.0 | 95.0 | 76.5 | 53.0 | 37.0 | 26.5 | 19.0 | 13.5 | 10.0 | 6.0 |
0% RAP | 100.0 | 98.3 | 80.4 | 51.6 | 34.1 | 20.9 | 14.4 | 9.7 | 7.8 | 6.7 |
30% RAP | 100.0 | 96.9 | 80.6 | 50.2 | 35.4 | 24.0 | 16.7 | 12.4 | 9.6 | 7.8 |
40% RAP | 100.0 | 96.5 | 81.0 | 50.3 | 35.2 | 24.3 | 16.9 | 12.6 | 9.6 | 7.7 |
50% RAP | 100.0 | 96.1 | 81.3 | 50.4 | 34.3 | 24.3 | 16.7 | 12.7 | 9.5 | 7.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Zhang, C.; Xiao, P.; Li, B.; Kang, A. Performance Characterization of Hot Mix Asphalt with High RAP Content and Basalt Fiber. Materials 2020, 13, 3145. https://doi.org/10.3390/ma13143145
Wu Z, Zhang C, Xiao P, Li B, Kang A. Performance Characterization of Hot Mix Asphalt with High RAP Content and Basalt Fiber. Materials. 2020; 13(14):3145. https://doi.org/10.3390/ma13143145
Chicago/Turabian StyleWu, Zhengguang, Chen Zhang, Peng Xiao, Bo Li, and Aihong Kang. 2020. "Performance Characterization of Hot Mix Asphalt with High RAP Content and Basalt Fiber" Materials 13, no. 14: 3145. https://doi.org/10.3390/ma13143145
APA StyleWu, Z., Zhang, C., Xiao, P., Li, B., & Kang, A. (2020). Performance Characterization of Hot Mix Asphalt with High RAP Content and Basalt Fiber. Materials, 13(14), 3145. https://doi.org/10.3390/ma13143145