Multiscale Assessment of Nanoscale Manufacturing Process on the Freeform Copper Surface
Abstract
1. Introduction
2. Method and Simulation Model
2.1. Modified QC Method
2.2. Model Setup
3. Results and Discussion
3.1. Model Validation
3.2. Effect of the Back-Engagement
3.3. Effect of the Tool Rake Angle
3.4. Effect of the Round Edge Diameter
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Fang, F.; Chen, J.; Zhang, X. Machining approach of freeform optics on infrared materials via ultra-precision turning. Opt. Express 2017, 25, 2051–2062. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; Luo, X.; Agrawal, A.; Reuben, R.L. Diamond machining of silicon: A review of advances in molecular dynamics simulation. Int. J. Mach. Tools Manuf. 2015, 88, 131–164. [Google Scholar] [CrossRef]
- Hatefi, S.; Abou-El-Hossein, K. Review of single-point diamond turning process in terms of ultra-precision optical surface roughness. Int. J. Adv. Manuf. Technol. 2020, 106, 2167–2187. [Google Scholar] [CrossRef]
- Yan, J.; Strenkowski, J.S. A finite element analysis of orthogonal rubber cutting. J. Mater. Process. Technol. 2006, 174, 102–108. [Google Scholar] [CrossRef]
- Thepsonthi, T.; Özel, T. 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: Experimental validations on chip flow and tool wear. J. Mater. Process. Technol. 2015, 221, 128–145. [Google Scholar] [CrossRef]
- Feito, N.; López-Puente, J.; Santiuste, C.; Miguélez, M. Numerical prediction of delamination in CFRP drilling. Compos. Struct. 2014, 108, 677–683. [Google Scholar] [CrossRef]
- Mamedov, A.; Lazoglu, I. Thermal analysis of micro milling titanium alloy Ti–6Al–4V. J. Mater. Process. Technol. 2016, 229, 659–667. [Google Scholar] [CrossRef]
- Cao, J.; Gharghouri, M.A.; Nash, P. Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates. J. Mater. Process. Technol. 2016, 237, 409–419. [Google Scholar] [CrossRef]
- Lee, D.J.; Yoon, E.Y.; Ahn, D.H.; Park, B.H.; Park, H.W.; Park, L.J.; Estrin, Y.; Kim, H.S. Dislocation density-based finite element analysis of large strain deformation behavior of copper under high-pressure torsion. Acta Mater. 2014, 76, 281–293. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, K. Multi-scale simulation of the nano-metric cutting process. Int. J. Adv. Manuf. Technol. 2010, 47, 891–901. [Google Scholar] [CrossRef]
- Rudd, R. Coarse-Grained Molecular Dynamics: Nonlinear Finite Elements and Finite Temperature. Phys. Rev. B 2005, 72. [Google Scholar] [CrossRef]
- Belak, J.; Stowers, I. A Molecular Dynamics Model of the Orthogonal Cutting Process; Lawrence Livermore National Lab.: Livermore, CA, USA, 1990. [Google Scholar]
- Zhao, H.; Shi, C.; Zhang, P.; Zhang, L.; Huang, H.; Yan, J. Research on the effects of machining-induced subsurface damages on mono-crystalline silicon via molecular dynamics simulation. Appl. Surf. Sci. 2012, 259, 66–71. [Google Scholar] [CrossRef]
- Wang, Q.; Bai, Q.; Chen, J.; Sun, Y.; Guo, Y.; Liang, Y. Subsurface defects structural evolution in nano-cutting of single crystal copper. Appl. Surf. Sci. 2015, 344, 38–46. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Fergani, O.; Li, X.; Guo Yang, J.; Chiang, K.N.; Liang, S.Y. Microstructure effects on cutting forces and flow stress in ultra-precision machining of polycrystalline brittle materials. J. Manuf. Sci. Eng. 2015, 137, 021020. [Google Scholar] [CrossRef]
- Lai, M.; Zhang, X.; Fang, F.; Bi, M. Fundamental investigation on partially overlapped nano-cutting of monocrystalline germanium. Precis. Eng. 2017, 49, 160–168. [Google Scholar] [CrossRef]
- Kohlhoff, S.; Gumbsch, P.; Fischmeister, H. Crack propagation in bcc crystals studied with a combined finite-element and atomistic model. Philos. Mag. A 1991, 64, 851–878. [Google Scholar] [CrossRef]
- Abraham, F.F.; Broughton, J.Q.; Bernstein, N.; Kaxiras, E. Spanning the length scales in dynamic simulation. Comput. Phys. 1998, 12, 538–546. [Google Scholar] [CrossRef]
- Rudd, R.E.; Broughton, J.Q. Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys. Rev. B 1998, 58, R5893. [Google Scholar] [CrossRef]
- Zhu, A.; He, D.; He, R.; Zou, C. Nanoindentation simulation on single crystal copper by quasi-continuum method. Mater. Sci. Eng. A 2016, 674, 76–81. [Google Scholar] [CrossRef]
- Jin, J.; Shevlin, S.; Guo, Z. Multiscale simulation of onset plasticity during nanoindentation of Al (0 0 1) surface. Acta Mater. 2008, 56, 4358–4368. [Google Scholar] [CrossRef]
- Ghareeb, A.; Elbanna, A. An adaptive quasicontinuum approach for modeling fracture in networked materials: Application to modeling of polymer networks. J. Mech. Phys. Solids 2020, 137, 103819. [Google Scholar] [CrossRef]
- Beex, L.; Kerfriden, P.; Rabczuk, T.; Bordas, S.P.A. Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation. Comput. Methods Appl. Mech. Eng. 2014, 279, 348–378. [Google Scholar] [CrossRef]
- Zhang, Z.; Ni, Y.; Zhang, J.; Wang, C.; Jiang, K.; Ren, X. Multiscale Simulation of Surface Defects Influence Nanoindentation by a Quasi-Continuum Method. Crystals 2018, 8, 291. [Google Scholar] [CrossRef]
- Mei, J.; Ni, Y.; Li, J. The effect of crack orientation on fracture behavior of tantalum by multiscale simulation. Int. J. Solids Struct. 2011, 48, 3054–3062. [Google Scholar] [CrossRef]
- Vatne, I.R.; Østby, E.; Thaulow, C.; Farkas, D. Quasicontinuum simulation of crack propagation in bcc-Fe. Mater. Sci. Eng. A 2011, 528, 5122–5134. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, H.; Guo, W.; Ma, Z.; Wang, X. Quasicontinuum analysis of the effect of tool geometry on nanometric cutting of single crystal copper. Optik 2014, 125, 682–687. [Google Scholar] [CrossRef]
- Tadmor, E.B.; Ortiz, M.; Phillips, R. Quasicontinuum analysis of defects in solids. Philos. Mag. A 1996, 73, 1529–1563. [Google Scholar] [CrossRef]
- Hardy, R.J. Formulas for determining local properties in molecular-dynamics simulations: Shock waves. J. Chem. Phys. 1982, 76, 622–628. [Google Scholar] [CrossRef]
- Rigelesaiyin, J.; Diaz, A.; Li, W.; Xiong, L.; Chen, Y. Asymmetry of the atomic-level stress tensor in homogeneous and inhomogeneous materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20180155. [Google Scholar] [CrossRef]
- Branicio, P.S.; Srolovitz, D.J. Local stress calculation in simulations of multicomponent systems. J. Comput. Phys. 2009, 228, 8467–8479. [Google Scholar] [CrossRef]
- Root, S.; Hardy, R.J.; Swanson, D.R. Continuum predictions from molecular dynamics simulations: Shock waves. J. Chem. Phys. 2003, 118, 3161–3165. [Google Scholar] [CrossRef]
- Zimmerman, J.A.; WebbIII, E.B.; Hoyt, J.; Jones, R.E.; Klein, P.; Bammann, D.J. Calculation of stress in atomistic simulation. Model. Simul. Mater. Sci. Eng. 2004, 12, S319. [Google Scholar] [CrossRef]
- Zhou, M. A new look at the atomic level virial stress: On continuum-molecular system equivalence. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2003, 459, 2347–2392. [Google Scholar] [CrossRef]
- Hong, R.T.; Huang, M.J.; Yang, J.Y. Molecular dynamics study of copper trench filling in damascene process. Mater. Sci. Semicond. Process. 2005, 8, 587–601. [Google Scholar] [CrossRef]
- Fang, F.Z.; Wu, H.; Zhou, W.; Hu, X.T. A study on mechanism of nano-cutting single crystal silicon. J. Mater. Process. Technol. 2007, 184, 407–410. [Google Scholar] [CrossRef]
- Fang, F.; Liu, B.; Xu, Z. Nanometric cutting in a scanning electron microscope. Precis. Eng. 2015, 41, 145–152. [Google Scholar] [CrossRef]
- Xie, W.; Fang, F. Rake angle effect in cutting-based single atomic layer removal. J. Manuf. Process. 2020, 56, 280–294. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liu, H.; Zhang, L.; Becton, M. Multiscale Assessment of Nanoscale Manufacturing Process on the Freeform Copper Surface. Materials 2020, 13, 3135. https://doi.org/10.3390/ma13143135
Xu Y, Liu H, Zhang L, Becton M. Multiscale Assessment of Nanoscale Manufacturing Process on the Freeform Copper Surface. Materials. 2020; 13(14):3135. https://doi.org/10.3390/ma13143135
Chicago/Turabian StyleXu, Yafei, Handing Liu, Liuyang Zhang, and Matthew Becton. 2020. "Multiscale Assessment of Nanoscale Manufacturing Process on the Freeform Copper Surface" Materials 13, no. 14: 3135. https://doi.org/10.3390/ma13143135
APA StyleXu, Y., Liu, H., Zhang, L., & Becton, M. (2020). Multiscale Assessment of Nanoscale Manufacturing Process on the Freeform Copper Surface. Materials, 13(14), 3135. https://doi.org/10.3390/ma13143135