Surface Plasmon Enhancement of Eu3+ Emission Intensity in LaPO4/Ag Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ag/La0.95Eu0.05PO4 Nanostructures
2.2. Instruments and Measurements
3. Results and Discussion
3.1. Structural Analysis
3.2. Microstructural Characterization
3.3. Diffuse Reflectance
3.4. Photoluminescence Measurements
- (i)
- the displacement of La0.95Eu0.05PO4 phosphor particles from the vicinity of the metal particles and consequently a luminescence efficiency decrease [20];
- (ii)
- the reabsorption of emitted light, due to the electromagnetic coupling between the neighbouring particles in the aggregates. Quinten et al. reported that the Ag aggregate spectra clearly show single-particle resonance splitting into new resonances, most of which contribute at longer wavelengths (~500–600 nm) than the resonance wavelength of the single particle (~400 nm). Thus, the strongest Eu3+ excitation line (~393 nm) does not overlap efficiently with the silver nanoparticles’ plasmon resonance [44].
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Materials Genome Initiative. Available online: https://www.mgi.gov/ (accessed on 22 May 2020).
- Advanced Materials and Applications: Tackling New R&D and Engineering Challenges. Elsevier: Amsterdam, Netherlands. Available online: https://www.elsevier.com/__data/assets/pdf_file/0018/120942/R_D-Solutions_CHEM_Ebook_Advanced-Materials_DIGITAL.pdf (accessed on 25 June 2020).
- Kar, S. An overview of recent advances in application of some inorganic materials-biological and technological perspectives. J. Biotechnol. Biomater. 2016, 6, 7. [Google Scholar] [CrossRef]
- Shubha, G.N.; Tejaswini, M.L.; Lakshmi, K.P. Advanced material for newer applications. Mater. Today Proc. 2018, 5, 2541–2546. [Google Scholar] [CrossRef]
- Dramićanin, D.M. Luminescence Thermometry, Methods, Materials, and Applications, 1st ed.; Elsevier: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Cao, G. Nanostructures & Nanomaterials Synthesis, Properties & Applications, 2nd ed.; Imperial College Press: London, UK, 2011. [Google Scholar] [CrossRef]
- Blasse, G.; Grabmaier, B.C. Luminescent Materials, 1st ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 1994. [Google Scholar] [CrossRef]
- Shaik, N.P.; Poornachandra, R.N.V.; Murthy, K.V.R. Photoluminescence properties of Eu3+, Ce3+ doped LaPO4 phosphors. Adv. Mater. Lett. 2014, 5, 722–727. [Google Scholar] [CrossRef]
- Runowski, M.; Grzyb, T.; Zep, A.; Krzyczkowska, P.; Gorecka, E.; Giersig, M.; Lis, S. Eu3+ and Tb3+ doped LaPO4 nanorods, modified with luminescent organic compound, exhibiting tunable multicolour emission. Rsc. Adv. 2014, 86, 46305–46312. [Google Scholar] [CrossRef] [Green Version]
- Malyy, T.S.; Vistovskyy, V.V.; Khapko, Z.A.; Pushak, A.S.; Mitina, N.E.; Zaichenko, A.S.; Gektin, A.V.; Voloshinovskii, A.S. Recombination luminescence of LaPO4-Eu and LaPO4-Pr nanoparticles. J. Appl. Phys. 2013, 113, 224305. [Google Scholar] [CrossRef] [Green Version]
- Loc, D.X.; Chi, T.T.K.; Huong, T.T.; Anh, T.K.; Strek, W.; Minch, L.Q. Synthesis and characterization of core/shell structured nanophosphors CePO4:Tb@LaPO4 by solvothermal method. J. Rare Earths 2011, 29, 1147–1151. [Google Scholar] [CrossRef]
- Trejgis, K.; Maciejewska, K.; Bednarkiewicz, A.; Marciniak, L. Near infrared-to-near infrared excited-state absorption in LaPO4:Nd3+ nanoparticles for luminescent nanothermometry. ACS Appl. Nano Mater. 2020, 3, 4818–4825. [Google Scholar] [CrossRef]
- Gavrilović, T.; Periša, J.; Papan, J.; Vuković, K.; Smits, K.; Jovanović, J.D.; Dramićanin, D.M. Particle size effects on the structure and emission of Eu3+:LaPO4 and EuPO4 phosphors. J. Lumin. 2018, 195, 420–429. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Karlsson, M.; Bettinelli, M. Inorganic phosphor materials for lighting. Top. Curr. Chem. (Z) 2016, 374. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, Z.; Shao, B.; Yang, J.; Wang, Y.; Qiu, J.; Song, Z.; Yang, Y. Preparation and photoluminescence enhancement of silica-coated LaPO4:Eu3+ three dimensional ordered macroporous films. Ceram. Int. 2015, 41, 8109–8113. [Google Scholar] [CrossRef]
- Dorman, J.A.; Choi, J.H.; Kuzmanich, G.; Chang, J.P. High-quality white light using core–shell RE3+:LaPO4 (RE = Eu, Tb, Dy, Ce) phosphors. J. Phys. Chem. C 2012, 116, 12854–12860. [Google Scholar] [CrossRef]
- Van Hest, J.J.H.A.; Blab, A.G.; Gerritsen, H.C.; de Mello Donegá, C.; Meijerink, A. Probing the influence of disorder on lanthanide luminescence using Eu-doped LaPO4 nanoparticles. J. Phys. Chem. C 2017, 121, 19373–19382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stouwdam, J.W.; Van Veggel, F.C.J.M. Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir 2004, 20, 11763–11771. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Song, H.; Lu, S.; Liu, Z.; Yang, L.; Kong, X. Luminescent properties of LaPO4:Eu nanoparticles and nanowires. J. Phys. Chem. B 2004, 108, 16697–16702. [Google Scholar] [CrossRef]
- Ansari, A.A. Silica-modified luminescent LaPO4:Eu@LaPO4@SiO2 core/shell nanorods: Synthesis, structural and luminescent properties. Luminescence 2017, 33, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yang, K.; Wu, A.; Bai, H.; Bao, J.; Qiao, Y.; Yang, Y.; Li, W.; Liu, Y. Luminescence studies and Judd–Ofelt analysis on SiO2@LaPO4:Eu@SiO2 submicro-spheres with different size of intermediate shells. Sci. Rep. 2019, 9, 13065. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, Q. Optimization of LaPO4:Bi3+ single-phased white-emitting phosphor luminescence properties by Li+/Na+ doping. Int. J. Opt. 2019, 2019, 6. [Google Scholar] [CrossRef]
- Dolgov, L.; Hong, J.-Y.; Zhou, L.; Li, X.; Li, J.; Đorđević, V.; Dramićanin, M.; Shi, J.; Wu, M. Efficient luminescence enhancement of Mg2TiO4:Mn4+ red phosphor by incorporating plasmonic Ag@SiO2 nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 21004–21009. [Google Scholar] [CrossRef]
- Kushlyk, M.; Tsiumra, V.; Zhydachevskyy, Y.; Haiduchok, V.; Syvorotka, I.I.; Sugak, D.; Suchocki, A. Enhancement of the YAG: Ce,Yb down-conversion emission by plasmon resonance in Ag nanoparticles. J. Alloys Compd. 2019, 804, 202–212. [Google Scholar] [CrossRef]
- Jupri, S.A.; Ghoshal, S.K.; Yusof, N.N.; Omar, M.F.; Hamzah, K.; Krishnan, G. Influence of surface plasmon resonance of Ag nanoparticles on photoluminescence of Ho3+ ions in magnesium-zinc-sulfophosphate glass system. Opt. Laser Technol. 2020, 126, 106134. [Google Scholar] [CrossRef]
- Lina, L.; Yu, Z.; Wang, Z.; Zheng, B.; Feng, Z.; Zheng, Z. Plasmon-enhanced luminescence of Ag@SiO2/β-NaYF4:Tb3+ nanocomposites via absorption & emission matching. Mater. Chem. Phys. 2018, 220, 278–285. [Google Scholar] [CrossRef]
- Alkan, G.; Mancic, L.; Tamura, S.; Tomita, K.; Tan, Z.; Sun, F.; Rudolf, R.; Ohara, S.; Friedrich, B.; Milosevic, O. Plasmon enhanced luminescence in hierarchically structured Ag@(Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis. Adv. Powder Technol. 2019, 30, 1409–1418. [Google Scholar] [CrossRef]
- Lin, L.; Chen, J.; Wang, Z.; Feng, Z.; Huang, F.; Zheng, B.; Huang, L.; Yu, Z.; Zheng, Z. Plasmon-enhanced broad-band quantum-cutting of NaBaPO4:Eu2+, Yb3+ phosphor decorated with Ag nano-particles. Mater. Res. Bull. 2017, 93, 35–41. [Google Scholar] [CrossRef]
- Zheng, B.; Xu, S.; Lin, L.; Wang, Z.; Feng, Z.; Zheng, Z. Plasmon enhanced near-infrared quantum cutting of KYF4:Tb3+, Yb3+ doped with Ag nanoparticles. Opt. Lett. 2015, 40, 2630–2633. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhong, H.; Chen, B.; Sui, G.; Sun, J.; Xu, S.; Cheng, L.; Zhang, J. Highly stable and tunable white luminescence from Ag-Eu3+ co-doped fluoroborate glass phosphors combined with violet LED. Opt. Express 2018, 26, 1870–1881. [Google Scholar] [CrossRef]
- Amjad, R.J.; Dousti, M.R.; Sahar, M.R.; Shaukat, S.F.; Ghoshal, S.K.; Sazali, E.S.; Nawaz, F. Silver nanoparticles enhanced luminescence of Eu3+ -doped tellurite glass. J. Lumin. 2014, 154, 316–321. [Google Scholar] [CrossRef]
- Selvan, T.; Hayakawa, T.; Nogami, M. Remarkable influence of silver islands on the enhancement of fluorescence from Eu3+ ion-doped silica gels. J. Phys. Chem. B 1999, 103, 7064–7067. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Shao, B.; Liao, J.; Lai, S.; Qiu, J.; Song, Z.; Yang, Y. Ag nanoparticles-enhanced photoluminescence in LaPO4:Eu three-dimensional ordered macroporous films. J. Am. Ceram. Soc. 2015, 98, 1562–1566. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Shao, B.; Yang, J.; Wang, Y.; Qiu, J.; Song, Z. Photoluminescence enhancement of SiO2-coated LaPO4:Eu3+ inverse opals by surface plasmon resonance of Ag nanoparticles. J. Am. Ceram. Soc. 2016, 99, 3330–3335. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Phadke, S.; Ninob, J.C.; Islam, M.S. Structural and defect properties of the LaPO4 and LaP5O14-based proton conductors. J. Mater. Chem. 2012, 22, 25388–25394. [Google Scholar] [CrossRef]
- Marciniak, L.; Strek, W.; Guyot, Y.; Hreniak, D.; Boulon, G. Synthesis and Nd3+ luminescence properties of ALa1−xNdxP4O12 (A = Li, Na, K, Rb) tetraphosphate nanocrystals. J. Phys. Chem. C 2015, 119, 5160–5167. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Zhang, Z. Effects of pH value on growth morphology of LaPO4 nanocrystals: Investigated from experiment and theoretical calculations. Appl. Phys. A 2016, 122, 7. [Google Scholar] [CrossRef]
- Meyssamy, H.; Riwotzki, K.; Kornowski, A.; Naused, S.; Haase, M. Wet-chemical synthesis of doped colloidal nanomaterials: Particles and fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce,Tb. Adv. Mater. 1999, 11, 840–844. [Google Scholar] [CrossRef]
- Vodnik, V.V.; Božanić, K.D.; Bibić, N.; Šaponjić, V.Z.; Nedeljković, M.J. Optical properties of shaped silver nanoparticles. J. Nanosci. Nanotechnol. 2008, 8, 3511–3515. [Google Scholar] [CrossRef]
- Vukovic, V.V.; Nedeljkovic, M.J. Surface modification of nanometer-scale silver particles by imidazole. Langmuir 1993, 9, 980–983. [Google Scholar] [CrossRef]
- Binnemans, K.; Goller-Walrand, C. Application of the Eu3+ ion site symmetry determination. J. Rare Earths 1996, 14, 173–180. [Google Scholar]
- Tanner, A.P. Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. Chem. Soc. Rev. 2013, 42, 5090–5101. [Google Scholar] [CrossRef] [PubMed]
- Quinten, M. The color of finely dispersed nanoparticles. Appl. Phys. B 2001, 73, 317–326. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuzman, S.; Periša, J.; Đorđević, V.; Zeković, I.; Vukoje, I.; Antić, Ž.; Dramićanin, M.D. Surface Plasmon Enhancement of Eu3+ Emission Intensity in LaPO4/Ag Nanoparticles. Materials 2020, 13, 3071. https://doi.org/10.3390/ma13143071
Kuzman S, Periša J, Đorđević V, Zeković I, Vukoje I, Antić Ž, Dramićanin MD. Surface Plasmon Enhancement of Eu3+ Emission Intensity in LaPO4/Ag Nanoparticles. Materials. 2020; 13(14):3071. https://doi.org/10.3390/ma13143071
Chicago/Turabian StyleKuzman, Sanja, Jovana Periša, Vesna Đorđević, Ivana Zeković, Ivana Vukoje, Željka Antić, and Miroslav D. Dramićanin. 2020. "Surface Plasmon Enhancement of Eu3+ Emission Intensity in LaPO4/Ag Nanoparticles" Materials 13, no. 14: 3071. https://doi.org/10.3390/ma13143071
APA StyleKuzman, S., Periša, J., Đorđević, V., Zeković, I., Vukoje, I., Antić, Ž., & Dramićanin, M. D. (2020). Surface Plasmon Enhancement of Eu3+ Emission Intensity in LaPO4/Ag Nanoparticles. Materials, 13(14), 3071. https://doi.org/10.3390/ma13143071