Simultaneous Analysis of Paracetamol and Diclofenac Using MWCNTs-COOH Modified Screen-Printed Carbon Electrode and Pulsed Potential Accumulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentations
2.2. Chemicals
2.3. DPAdSV Procedure
2.4. HPLC/PAD Procedure
2.5. Direct Analysis of Water Samples
3. Results and Discussion
3.1. Screen-Printed Electrode Selection and Surface Studies
3.2. Effect of pH
3.3. Accumulation of PA and DF at SPCE/MWCNTs-COOH and Sensor Selectivity
3.4. The Linear Ranges, Limit of Detection (LOD), and Limit of Quantification (LOQ)
3.5. Precision and Reproducibility
3.6. Analytical Applications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tanuja, S.B.; Kumara Swamy, B.E.; Pai, K.V. Electrochemical determination of paracetamol in presence of folic acid at nevirapine modified carbon paste electrode: A cyclic voltammetric study. J. Electroanal. Chem. 2017, 798, 17–23. [Google Scholar] [CrossRef]
- Sasal, A.; Tyszczuk-Rotko, K.; Chojecki, M.; Korona, T.; Rotko, M. Direct determination of paracetamol in environmental samples using screen-printed carbon/carbon nanofibers sensor—Experimental and theoretical studies. Electroanalysis 2020. [Google Scholar] [CrossRef]
- Mekassa, B.; Baker, P.G.L.; Chandravanshi, B.S.; Tessema, M. Synthesis, characterization, and preparation of nickel nanoparticles decorated electrochemically reduced graphene oxide modified electrode for electrochemical sensing of diclofenac. J. Solid State Electr. 2018, 22, 3607–3619. [Google Scholar] [CrossRef]
- Sasal, A.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I. First electrochemical sensor (screen-printed carbon electrode modified with carboxyl functionalized multiwalled carbon nanotubes) for ultratrace determination of diclofenac. Materials 2020, 13, 781. [Google Scholar] [CrossRef] [Green Version]
- Pugajeva, I.; Rusko, J.; Perkons, I.; Lundanes, E.; Bartkevics, V. Determination of pharmaceutical residues in wastewater using high performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry. J. Pharmaceut. Biomed. 2017, 133, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Sadkowska, J.; Caban, M.; Chmielewski, M.; Stepnowski, P.; Kumirska, J. Environmental aspects of using gas chromatography for determination of pharmaceutical residues in samples characterized by different composition of the matrix. Arch. Environ. Prot. 2017, 43, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Valcarcel, Y.; Gonzales Alonso, S.; Rodriguez-Gil, J.L.; Romo Maroto, R.; Gil, A.; Catala, M. Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceutical in rivier- and drinking- water of the Madrid Region in Spain. Chemosphere 2011, 82, 1062–1071. [Google Scholar] [CrossRef]
- Kosjek, T.; Heath, E.; Krbavcic, A. Determination of non-steroidal anti-inflammatory drug (NSAIDs) residues in water samples. Environ. Int. 2005, 31, 679–685. [Google Scholar] [CrossRef]
- Siddiqui, F.A.; Arayne, M.S. Development and validation of stability-indicating HPLC method for the simultaneous determination of paracetamol, tizanidine, and diclofenac in pharmaceuticals and human serum. J. AOAC Int. 2011, 94, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Badgujar, M.A.; Pingale, S.G.; Mangaonkar, K.V. Simultaneous determination of paracetamol, chlorzoxazoneand diclofenac sodium in tablet dosage form by high performance liquid chromatography. E. J. Chem. 2011, 8, 1206–1211. [Google Scholar] [CrossRef]
- Diuzheva, A.; Balogh, J.; Jekő, J.; Cziáky, Z. Application of liquid–liquid microextraction for the effective separation and simultaneous determination of 11 pharmaceuticals in wastewater samples using high-performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2018, 41, 2871–2877. [Google Scholar] [CrossRef] [PubMed]
- El-Kommos, M.E.; Mohamed, N.A.; Hakiem, A.F.A. Selective reversed phase high performance liquid chromatography for the simultaneous determination of some pharmaceutical binary mixtures containing NSAIDs. J. Liq. Chromatogr. R. T. 2012, 35, 2188–2202. [Google Scholar] [CrossRef]
- Caban, M.; Mioduszewska, K.; Łukaszewicz, P.; Migowska, N.; Stepnowski, P.; Kwiatkowski, M.; Kumirska, J. A newsilylating reagent -dimethyl(3,3,3-trifluoropropyl)silyldiethylamine—For thederivatisation of non-steroidalanti-inflammatorydrugsprior to gaschromatography-mass spectrometryanalysis. J. Chromatogr. A 2014, 1346, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Antakli, S.; Nejem, L.; Soufan, K. An analytical spectrophotometric study of determine paracetamol and diclofenac sodium in pharmaceutical formulations. Res. J. Pharm. Technol. 2018, 11, 2952–2960. [Google Scholar] [CrossRef]
- Solangi, A.; Memon, S.; Mallah, A.; Memon, N.; Khuhawar, M.Y.; Bhanger, M.I. Determination of ceftriaxone, ceftizoxime, paracetamol, and diclofenac sodium by capillary zone electrophoresis in pharmaceutical formulations and in human blood serum. Turk. J. Chem. 2010, 34, 921–933. [Google Scholar]
- Solangi, A.R.; Memon, S.Q.; Mallah, A.; Memon, N.; Khuhawar, M.Y.; Bhanger, M.I. Development and implication of a capillary electrophoresis methodology for ciprofloxacin, paracetamol and diclofenac sodium in pharmaceutical formulations and simultaneously in human urine samples. Pak. J. Pharm. Sci. 2011, 24, 539–544. [Google Scholar]
- Zhou, T.; Li, L.; Wang, J.; Chen, X.; Yang, G.; Shan, Y. 4-Phosphatephenyl-modified glassy carbon electrode for real-time and simultaneous electrochemical monitoring of paracetamol and diclofenac release from electrospun nanofibers. Anal. Methods 2015, 7, 9289–9294. [Google Scholar] [CrossRef]
- Okoth, O.K.; Yan, K.; Liu, L.; Zhang, J. Simultaneous electrochemical determination of paracetamol and diclofenac based on poly(diallyldimethylammonium chloride) functionalized graphene. Electroanalysis 2016, 28, 76–82. [Google Scholar] [CrossRef]
- Afshar, E.; Jalali, F. Sensitive simultaneous determination of paracetamol and diclofenac based on au nanoparticles—Functionalized graphene/poly (L-arginine) glassy carbon electrode. J. Chil. Chem. Soc. 2016, 61, 2846–2851. [Google Scholar] [CrossRef] [Green Version]
- Golzari Aqda, T.; Behkami, S.; Bagheri, H. Porous eco-friendly fibers for on-line micro solid-phase extraction of nonsteroidal anti–inflammatory drugs from urine and plasma samples. J. Chromatogr. A 2018, 1574, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Sipa, K.; Brycht, M.; Leniart, A.; Nosal–Wiercińska, A.; Skrzypek, S. Improved electroanalytical characteristics for the determination of pesticide metobromuron in the presence of nanomaterials. Anal. Chim. Acta 2018, 1030, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Keskin, E.; Ertürk, A.S. Electrochemical determination of paracetamol in pharmaceutical tablet by a novel oxidative pretreated pencil graphite electrode. Ionics 2018, 24, 4043–4054. [Google Scholar] [CrossRef]
- Goyal, R.N.; Chatterjee, S.; Agrawal, B. Electrochemical investigations of diclofenac at edge plane pyrolytic graphite electrode and its determination in human urine. Sens. Actuators B Chem. 2010, 145, 743–748. [Google Scholar] [CrossRef]
- Gosser, D.K. Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanism; VCH: New York, NY, USA, 1993. [Google Scholar]
- Korolczuk, M. Application of pulsed potential accumulation for minimization of interferences from surfactants in voltammetric determination of traces of Cr(VI). Electroanalysis 2000, 12, 837–840. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Koper, A. How to determine uranium faster and cheaper by adsorptive stripping voltammetry in water samples containing surface active compounds. Electroanalysis 2011, 23, 1442–1446. [Google Scholar] [CrossRef]
- Mocak, J.; Bond, A.M.; Mitchell, S.; Scollary, G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques. Pure Appl. Chem. 1997, 69, 297–328. [Google Scholar] [CrossRef]
Parameter | PA | DF | PA and DF |
---|---|---|---|
Linear range [nmol L−1] | 5.0–5000.0 | 0.1–20.0 | 5.0–5000.0 (PA) 0.1–20.0 (DF) |
Slope (b) ± SDb (n = 3) [µA/nmol L−1] | 0.0014 ± 0.000010 | 0.15 ± 0.025 | 0.00096 ± 0.000044 (PA) 0.091 ± 0.012 (DF) |
Intercept (a) ± SDa (n = 3) [µA] | 0.13 ± 0.00062 | 0.057 ± 0.00079 | 0.13 ± 0.00046 (PA) 0.043 ± 0.00092 (DF) |
Correlation coefficient (r) | 0.9971 | 0.9989 | 0.9964 (PA) 0.9963 (DF) |
LOD [nmol L−1] | 1.34 | 0.015 | 1.44 (PA) 0.030(DF) |
LOQ [nmol L−1] | 4.47 | 0.051 | 4.80 (PA) 0.10 (DF) |
Technique | Analyte | Linear Range [mol L−1] | Detection Limit [mol L−1] | Application | Ref. |
---|---|---|---|---|---|
RP-HPLC | PA DF | 1.1 × 10−6–6.6 × 10−5 6.3 × 10−8–3.1 × 10−5 | - | Pharmaceutical, Human serum | [9] |
RP-HPLC | PA DF | 3.3 × 10−4–9.9 × 10−4 1.6 × 10−5–4.7 × 10−5 | 1.3 × 10−8 7.9 × 10−8 | Pharmaceutical | [10] |
HPLC | PA DF | 6.6 × 10−9–6.6 × 10−7 3.1 × 10−9–3.1 × 10−7 | 4.4 × 10−8 9.7 × 10−10 | Wastewater samples | [11] |
RP-HPLC | PA DF | 6.6 × 10−6–2.0 × 10−4 3.1 × 10−6–1.0 × 10−4 | 2.2 × 10−5 1.1 × 10−6 | Pharmaceutical | [12] |
GC-MS | PA DF | 1.1 × 10−7–6.6 × 10−5 2.8 × 10−8–3.1 × 10−5 | - | Sea water, Wastewater | [13] |
Spectrophotometric | PA DF | 6.6 × 10−6–2.0 × 10−4 1.6 × 10−6–1.0 × 10−4 | 1.2 × 10−6 1.6 × 10−7 | Pharmaceutical | [14] |
Electrophoresis | PA DF | 3.3 × 10−5–8.3 × 10−4 3.1 × 10−6–3.9 × 10−4 | 6.6 × 10−6 1.6 × 10−6 | Pharmaceutical, Human serum | [15] |
Electrophoresis | PA DF | 3.3 × 10−5–1.7 × 10−3 3.1 × 10−6–3.9 × 10−4 | 6.6 × 10−6 1.6 × 10−6 | Pharmaceutical, Urine sample | [16] |
4-PP/GCE | PA DF | 1.9 × 10−6–1.7 × 10−4 3.7 × 10−7–5.2 × 10−5 | - | Drug delivery system | [17] |
PDDA/GR/GCE | PA DF | 3.0 × 10−6–2.0 × 10−4 1.0 × 10−5–1.0 × 10−4 | 2.2 × 10−7 6.1 × 10−7 | Pharmaceutical, Lake water | [18] |
AuNPs-GR/PAG/GCE | PA DF | 5.0 × 10−7–5.0 × 10−5 5.0 × 10−7–4.0 × 10−5 | 4.0 × 10−8 8.0 × 10−8 | Human serum | [19] |
SPCE/MWCNTs-COOH | PA DF | 5.0 × 10−9–5.0 × 10−6 1.0 × 10−10–2.0 × 10−8 | 1.4 × 10−9 3.0 × 10−11 | River water, Wastewater | This work |
Sample | PA Concentration [nmol L−1] ± SD (n = 3) | Recovery * [%] | Relative Error ** [%] | ||
Added | Found DPAdSV | Found HPLC/PAD | |||
Bystrzca | 0 | <LOD | <LOD | - | - |
river | 5.0 | 5.09 ± 0.044 | <LOD | 101.8 | - |
500.0 | 505.0 ± 4.0 | 514.0 ± 6.5 | 101.0 | 1.8 | |
Waste- | 0 | 24.3 ± 0.5 | 25.4 ± 6.0 | - | 4.3 |
water | 5.0 | 29.2 ± 5.5 | 31.3 ± 2.7 | 99.7 | 6.7 |
500.0 | 523.0 ± 9.0 | 529.0 ± 8.6 | 99.8 | 1.1 | |
DF Concentration [nmol L−1] ± SD (n = 3) | Recovery * [%] | Relative Error ** [%] | |||
Added | Found DPAdSV | Found HPLC/PAD | |||
Bystrzca | 0 | <LOD | <LOD | - | - |
river | 0.5 | 0.51 ± 0.0066 | <LOD | 102.0 | - |
50.0 | 50.5 ± 0.4 | 49.6 ± 0.8 | 101.0 | 1.8 | |
Waste- | 0 | 3.7 ± 0.7 | <LOD | - | - |
water | 0.5 | 4.4 ± 0.6 | <LOD | 104.8 | - |
50.0 | 51.8 ± 0.7 | 49.7 ± 1.1 | 96.5 | 4.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasal, A.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I.; Kuryło, M. Simultaneous Analysis of Paracetamol and Diclofenac Using MWCNTs-COOH Modified Screen-Printed Carbon Electrode and Pulsed Potential Accumulation. Materials 2020, 13, 3091. https://doi.org/10.3390/ma13143091
Sasal A, Tyszczuk-Rotko K, Wójciak M, Sowa I, Kuryło M. Simultaneous Analysis of Paracetamol and Diclofenac Using MWCNTs-COOH Modified Screen-Printed Carbon Electrode and Pulsed Potential Accumulation. Materials. 2020; 13(14):3091. https://doi.org/10.3390/ma13143091
Chicago/Turabian StyleSasal, Agnieszka, Katarzyna Tyszczuk-Rotko, Magdalena Wójciak, Ireneusz Sowa, and Michał Kuryło. 2020. "Simultaneous Analysis of Paracetamol and Diclofenac Using MWCNTs-COOH Modified Screen-Printed Carbon Electrode and Pulsed Potential Accumulation" Materials 13, no. 14: 3091. https://doi.org/10.3390/ma13143091
APA StyleSasal, A., Tyszczuk-Rotko, K., Wójciak, M., Sowa, I., & Kuryło, M. (2020). Simultaneous Analysis of Paracetamol and Diclofenac Using MWCNTs-COOH Modified Screen-Printed Carbon Electrode and Pulsed Potential Accumulation. Materials, 13(14), 3091. https://doi.org/10.3390/ma13143091