Towards a Correlation between Structural, Magnetic, and Luminescence Properties of CeF3:Tb3+ Nanocrystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. Samples Characterization
3. Results and Discussion
3.1. Structural and Morphological Characterisation
3.2. X-ray Photoelectron Spectroscopy (XPS) Characterization
3.3. Magnetic Properties
3.4. Photoluminescence Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Escudero, A.; Becerro, A.I.; Carrillo-Carrion, C.; Núñez, N.O.; Zyuzin, M.V.; Laguna, M.; González, D.; Ocaña, M.; Parak, W.J. Rare earth based nanostructured materials: Synthesis, functionalization, properties and bioimaging and biosensing applications. Nanophotonics 2017, 6, 881–921. [Google Scholar] [CrossRef]
- Sharma, R.K.; Mudring, A.V.; Ghosh, P. Recent trends in binary and ternary rare-earth fluoride nanophosphors: How structural and physical properties influence optical behavior. J. Lumin. 2017, 189, 44–63. [Google Scholar] [CrossRef]
- Fedorov, P.; Luginina, A.A.; Kuznetsov, S.V.; Osiko, V.V. Nanofluorides. J. Fluor. Chem. 2011, 132, 1012–1039. [Google Scholar] [CrossRef]
- Lee, G.H.; Chang, Y.; Kim, T.J. Ultrasmall Lanthanide Oxide Nanoparticles for Biomedical Imaging and Therapy; Woodhead Publishing Series in Biomaterial; Woodhead Publishing: Cambridge, MA, UK, 2004. [Google Scholar]
- Cheetham, A.K.; Fender, B.E.F.; Fuess, H.; Wright, A.F. A powder neutron diffraction study of lanthanum and cerium trifluorides. Acta Crystallogr. 1976, B32, 94–97. [Google Scholar] [CrossRef]
- Samanta, T.; Sarkar, S.; Adusumalli, V.N.K.B.; Praveen, A.E.; Mahalingam, V. Enhanced visible and near infrared emissions via Ce3+ to Ln3+ energy transfer in Ln3+-doped CeF3 nanocrystals (Ln = Nd, Sm). Dalton Trans. 2016, 45, 78–84. [Google Scholar] [CrossRef][Green Version]
- Li, C.; Li, F.; Li, T.; Bai, T.; Wang, L.; Shi, Z.; Feng, S. A facile synthesis and photoluminescence properties of water-dispersible RE3+ doped CeF3 nanocrystals and solid nanocomposites with polymers. Dalton Trans. 2012, 41, 4890–4895. [Google Scholar] [CrossRef]
- Sayed, F.N.; Grover, V.; Dubey, K.A.; Sudarsan, V.; Tyagi, A.K. Solid state white light emitting systems based on CeF3:RE3+ nanoparticles and their composites with polymers. J. Colloid Interface Sci. 2011, 353, 445–453. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Dong, L.; Liu, D.; Qi, Z. Low temperature molten salt synthesis of CeF3 and CeF3:Tb3+ phosphors with efficient luminescence properties. J. Lumin. 2019, 205, 122–128. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Zhang, X.; Yao, M.; Ma, L.; Chen, W. Luminescence and energy transfer in water soluble CeF3 and CeF3:Tb3+ nanoparticles. J. Nanosci. Nanotechnol. 2009, 9, 6283–6291. [Google Scholar] [CrossRef]
- Qu, X.; Yang, H.K.; Chung, J.W.; Moon, B.K.; Choi, B.C.; Jeong, J.H.; Kim, K.H. Polyol-mediated solvothermal synthesis and luminescence properties of CeF3, and CeF3:Tb3+ nanocrystals. J. Solid State Chem. 2011, 184, 246–251. [Google Scholar] [CrossRef]
- Wang, Z.L.; Quan, Z.W.; Jia, P.Y.; Lin, C.K.; Luo, Y.; Chen, Y.; Fang, J.; Zhou, W.; O’Connor, C.J.; Lin, J. A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3:Tb3+ and CeF3:Tb3+/LaF3 (core/shell) nanoparticles. Chem. Mater. 2006, 18, 2030–2037. [Google Scholar] [CrossRef]
- Savinkov, A.V.; Korableva, S.L.; Tagirov, M.S.; Suzuki, H.; Matsumoto, K.; Abe, S. Revised measurements and interpretation of magnetic properties of oriented CeF3 single crystals. J. Low Temp. Phys. 2016, 185, 603–608. [Google Scholar] [CrossRef]
- Xu, Y.; Duan, M. Theory of Faraday rotation and susceptibility of rare-earth trifluorides. Phys. Rev. B 1992, 46, 11636–11641. [Google Scholar] [CrossRef] [PubMed]
- Gong-Qiang, L.; Wen-Kang, Z.; Xing, Z. Quantitative analyses of magnetic and magneto-optical properties in cerium trifluoride. Phys. Rev. B 1993, 48, 16091–16094. [Google Scholar] [CrossRef] [PubMed]
- Chaput, F.; Lerouge, F.; Bulin, A.L.; Amans, D.; Odziomek, M.; Faure, A.-C.; Monteil, M.; Dozov, I.; Parola, S.; Bouquet, F.; et al. Liquid-crystalline suspensions of photosensitive paramagnetic CeF3 nanodiscs. Langmuir 2019, 35, 16256–16265. [Google Scholar] [CrossRef] [PubMed]
- Shoko, E.; Smith, M.F.; McKenzie, R.H. Mixed valency in cerium oxide crystallographic phases: Determination of valence of the different cerium sites by the bond valence method. Phys. Rev. B 2009, 79, 134108. [Google Scholar] [CrossRef][Green Version]
- Secu, C.E.; Matei, E.; Negrila, C.; Secu, M. The influence of the nanocrystals size and surface on the Yb/Er doped LaF3 luminescence properties. J. Alloy. Compd. 2019, 791, 1098–1104. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.-R. MAUD (material analysis using diffraction): A user friendly Java program for Rietveld texture analysis and more. In Proceedings of the Twelfth International Conference on Textures of Materials (ICOTOM-12), Montreal, Canada, 9–13 August 1999. [Google Scholar]
- PDF-ICDD. Powder Diffraction File (PDF-4+ 2018 Software 4.18.0.2); International Centre for Diffraction Data, 12 Campus Boulevard: Newtown Square, PA, USA, 2011. [Google Scholar]
- Baer, D.R.; Engelhard, M.; Johnson, G.E.; Laskin, J.; Lai, J.; Mueller, K.; Munusamy, P.; Thevuthasan, S.; Wang, H.-F.; Washton, N.; et al. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. J. Vac. Sci. Technol. A Vac. Surf. Films 2013, 31, 050820. [Google Scholar] [CrossRef]
- Barreca, D.; Gasparotto, A.; Maccato, C.; Maragno, C.; Tondello, E. Cerium (III) Fluoride Thin Films by XPS. Surf. Sci. Spectra 2006, 13, 87. [Google Scholar] [CrossRef]
- Kalkowski, G.; Kaindl, G.; Wortman, G.; Lentz, D.; Krause, S. 4f-ligand hybridization in CeF4 and TbF4 probed by core-level spectroscopies. Phys. Rev. B 1988, 37, 1376–1382. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bossche, J.V.D.; Neyts, K.; De Visschere, P.; Corlatan, D.; Pauwels, H.; Vercaemst, R.; Fiermans, L.; Poelman, D.; Van Meirhaeghe, R.L.; Laflére, W.H.; et al. XPS Study of TbF, and TbOF Centres in ZnS. Phys. Stat. Sol. (A) 1994, 146, K67. [Google Scholar] [CrossRef]
- Lee, C.J.; Vashishtha, S.; Sayal, A.; Weaver, J.F. Oxidation of a c-Tb2O3(111) thin film by the sequential formation of stoichiometric phases. Surf. Sci. 2020, 694, 121555. [Google Scholar] [CrossRef]
- Sarma, D.D.; Rao, C.N.R. XPES studies of oxides of second-and third-row transition metals including rare earths. J. Electron Spectrosc. Relat. Phenom. 1980, 20, 25–45. [Google Scholar] [CrossRef]
- Segal, E.; Wallace, W. Rare earth ions in a hexagonal field III. J. Solid State Chem. 1974, 6, 203–213. [Google Scholar] [CrossRef]
- Bleaney, B. Rare Earth Research II: Proceedings of the Third Conference on Rare Earth Research; Vorres, K., Ed.; Gordon and Breach: New York, NY, USA, 1964; p. 417. [Google Scholar]
- Yoshida, S.; Sugawara, T. Kondo effect in single crystals of Y-Ce alloys. Phys. Lett. A 1969, 30, 422–423. [Google Scholar] [CrossRef]
- Bourcet, J.C.; Fong, F.K. Quantum efficiency of diffusion limited energy transfer in La1−x−yCexTbyPO4. J. Chem. Phys. 1974, 60, 34–39. [Google Scholar] [CrossRef]
- Borlaf, M.; Kubrin, R.; Aseev, V.; Petrov, A.Y.; Nikonorov, N.; Graule, T. Deep submicrometer YAG:Ce phosphor particles with high photoluminescent quantum yield prepared by flame spray synthesis. J. Am. Ceram. Soc. 2017, 100, 3784–3793. [Google Scholar] [CrossRef]
- Batentschuk, M.; Brabec, C.J.; Khaidukov, N.; Levchuk, I.; Osvet, A.; Römling, L.; Schröppel, F. , Van Deun, R.; Zorenko, Y. Highly Luminescent Ca3Sc2Si3O12:Ce3+ Silicate Garnet Nano- and Microparticles with 50–70% Photoluminescence Quantum Yields as Efficient Phosphor Converters for White LEDs. TechConnect Briefs 2017, 4, 194–197. [Google Scholar]
Crystalline Phase | Cerium Fluoride (Ce0.75F3) | Cerium Oxide (CeO1.66) | R Factors (%) |
---|---|---|---|
Weight fraction (%) | 98.798 ± 0.001 | 1.2017 ± 0.002 | |
Crystal size (nm) | 13.985(2) | ||
Crystal system | Hexagonal | Cubic | Rwp (%) = 2.994 RB (%) = 2.358 Rexp. = 1.015 χ2 = 2.049 |
Space group | P-3c1 | Fm-3m | |
Calculated Unit Cell (Å) | a = b = 7.1053(3) c = 7.2614(1) | a = 5.415(1)(2) | |
Cell_angle_alpha Cell_angle_beta Cell_angle_gamma | 90° 90° 120° | 90° 90° 90° | |
Unit Cell according PDF (Å) (ref. [21]) | a = b = 7.1 c = 7.27 | a = b = 5.4112(10) | |
Cell Volume (Å3) | 317.38 (3) | 158.45(1) | |
Microstrain | 1.7 × 10 −5 ± 0.002 | 2.3x10 −6 ± 0.001 |
Atoms | Ce0.75F3 (calc.) | Ce0.75F3 (theor.) | Ce0.75F3 (calc.) | Ce0.75F3 (theor.) | Ce0.75F3 (calc.) | Ce0.75F3 (theor.) | Wyckoff Site | Atom Site Occupancy (theor/calc) |
---|---|---|---|---|---|---|---|---|
x | y | z | ||||||
F1 | 0.3862(3) | 0.356 | 0.3610(4) | 0.328 | 0.0712(3) | 0.096 | 12g | 1/0.8393(5) |
Ce | 0.3394(5) | 0.3333 | 0 | 0 | 0.2504(1) | 0.25 | 6f | 0.75/0.7503(2) |
F3 | 0.3334(2) | 0.3333 | 0.6671(5) | 0.6666 | 0.2267(3) | 0.167 | 4d | 1/0.9851(5) |
F4 | 0 | 0 | 0 | 0 | 0.2497(2) | 0.25 | 2a | 1/0.9877(4) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartha, C.; Secu, C.; Matei, E.; Negrila, C.; Leca, A.; Secu, M. Towards a Correlation between Structural, Magnetic, and Luminescence Properties of CeF3:Tb3+ Nanocrystals. Materials 2020, 13, 2980. https://doi.org/10.3390/ma13132980
Bartha C, Secu C, Matei E, Negrila C, Leca A, Secu M. Towards a Correlation between Structural, Magnetic, and Luminescence Properties of CeF3:Tb3+ Nanocrystals. Materials. 2020; 13(13):2980. https://doi.org/10.3390/ma13132980
Chicago/Turabian StyleBartha, Cristina, Corina Secu, Elena Matei, Catalin Negrila, Aurel Leca, and Mihail Secu. 2020. "Towards a Correlation between Structural, Magnetic, and Luminescence Properties of CeF3:Tb3+ Nanocrystals" Materials 13, no. 13: 2980. https://doi.org/10.3390/ma13132980