Hot-Deformation Behavior and Microstructure Evolution of the Dual-Scale SiCp/A356 Composites Based on Optimal Hot-Processing Parameters
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Stress–Strain Curves
3.2. Constitutive Equation
3.3. Processing Maps
3.4. Microstructure Analysis
3.5. Hot-Deformation Behavior
4. Conclusions
- Sress–strain curves showed typical DRX with a single peak stress followed by a gradual fall towards steady-state stress. Peak stress decreased with the increase of deformation temperature and the decrease of strain rate.
- The average deformation activation energy was 442.03 kJ/mol. The correlation coefficient R for linear regression of constitutive model was 0.951, which indicated the high accuracy of this model. The constitutive equation was expressed as:
- There are two “safe” domains based on the processing maps: one is at temperatures of 495–518 °C and strain rate of 0.62–5 s−1; another is at temperatures of 460–520 °C and strain rate of 0.03–0.62 s−1. When the temperature is 495–518 °C and strain rate is 0.62–5 s−1, it is suitable for the hot processing of dual-scale SiCp/A356 composites.
- The deformed microstructures at the corresponding processing parameters mainly exhibit DRX. The number of DRX grains in the “safe” domains is larger and the dislocation density is lower compared to those of instability domains. The typical DRX microstructural characteristics of the “safe” domains correspond to the SiC particles and hot-processing parameters.
- DRX grains mainly occur around SiC particles. The presence of SiC particles can promote effectively the DRX nucleation, which results in the dynamic softening mechanism of the dual-scale SiCp/A356 composites being dominated by DRX.
Author Contributions
Funding
Conflicts of Interest
References
- Wu, C.C.; Gao, T.; Liu, X.F. In-situ SiC reinforced Si-SiC 3D skeletons in SiC/Al-Si composites. J. Alloy. Compd. 2019, 810, 151730. [Google Scholar] [CrossRef]
- Lee, H.; Sohn, S.S.; Jeon, C.; Jo, I.; Lee, S.K.; Lee, S. Dynamic compressive deformation behavior of SiC-particulate-reinforced A356 Al alloy matrix composites fabricated by liquid pressing process. Mater. Sci. Eng. A 2017, 680, 368–377. [Google Scholar] [CrossRef]
- Yuan, D.; Yang, X.; Wu, S.S.; Lv, S.L.; Hu, K. Development of high strength and toughness nano-SiCp/A356 composites with ultrasonic vibration and squeeze casting. J. Mater. Process. Technol. 2019, 269, 1–9. [Google Scholar] [CrossRef]
- Ravi Kumar, N.V.; Ramachandra Rao, N.; Gokhale, A.A. Effect of SiC particle content on foaming and mechanical properties of remelted and diluted A356/SiC composite. Mater. Sci. Eng. A 2014, 598, 343–349. [Google Scholar] [CrossRef]
- Lakshmikanthan, A.; Bontha, S.; Krishna, M.; Koppad, P.G.; Ramprabhu, T. Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. J. Alloy. Compd. 2019, 786, 570–580. [Google Scholar] [CrossRef]
- Avinash, L.; Prabhu, T.R.; Bontha, S. The effect on the dry sliding wear behavior of gravity cast A357 reinforced with dual size silicon carbide particles. Appl. Mech. Mater. 2016, 829, 83–89. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, G.; Sun, D.; Chen, G.; Jiang, L. Microstructure and thermal conduction properties of an Al-12Si matrix composite reinforced with dual sized SiC particles. J. Mater. Sci. 2004, 39, 303–305. [Google Scholar] [CrossRef]
- Kai, X.Z.; Zhao, Y.T.; Wang, A.D.; Wang, C.M.; Mao, Z.M. Hot deformation behavior of in situ nano ZrB2 reinforced 2024Al matrix composite. Compos. Sci. Technol. 2015, 116, 1–8. [Google Scholar] [CrossRef]
- Xiao, P.; Gao, Y.M.; Xu, F.X.; Yang, S.S.; Li, Y.F.; Li, B.; Zhao, S.Y. Hot deformation behavior of in-situ nanosized TiB2 particulate reinforced AZ91 Mg matrix composite. J. Alloy. Compd. 2019, 798, 1–11. [Google Scholar] [CrossRef]
- Cao, Y.K.; Liu, Y.; Li, Y.P.; Liu, B.; Xu, R.J. Hot deformation behavior of nano-sized TiB reinforced Ti-6Al-4V metal matrix composites. Mech. Mater. 2019, 141, 103260. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Hao, S.M.; Xie, J.P.; Wang, A.Q.; Ma, D.Q. Hot deformation behavior of SiCp/Al-Cu composite. J. Mater. Eng. 2017, 45, 17–23. [Google Scholar] [CrossRef]
- Chen, S.; Teng, J.; Luo, H.B.; Wang, Y.; Zhang, H. Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites. Mater. Sci. Eng. A 2017, 697, 194–202. [Google Scholar] [CrossRef]
- Hao, S.M.; Xie, J.P.; Wang, A.Q.; Wang, W.Y.; Li, J.W.; Sun, H.L. Hot deformation behaviors of 35% SiCp/Al metal matrix composites. Trans. Nonferr. Met. Soc. 2014, 24, 2468–2474. [Google Scholar] [CrossRef]
- Deng, K.K.; Li, J.C.; Xu, F.J.; Nie, K.B.; Liang, W. Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite. Mater. Des. 2015, 67, 72–81. [Google Scholar] [CrossRef]
- Sun, Y.L.; Xie, J.P.; Hao, S.M.; Wang, A.Q.; Liu, P.; Li, M. Dynamic recrystallization model of 30% SiCp/Al composite. J. Alloy. Compd. 2015, 649, 865–871. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, A.Q.; Xie, J.P.; Liu, P. Hot deformation behavior and strain-compensated constitutive equation of nano-sized SiC particle reinforced Al-Si matrix composites. Materials 2020, 13, 1812. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.Y.; Zhang, X.X.; Xiao, B.; Ma, Z.Y. Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite. J. Alloy. Compd. 2017, 722, 145–157. [Google Scholar] [CrossRef]
- Chen, X.R.; Fu, D.F.; Teng, J.; Zhang, H. Hot deformation behavior and mechanism of hybrid aluminum-matrix composites reinforced with micro-SiC and nano-TiB2. J. Alloy. Compd. 2018, 753, 566–575. [Google Scholar] [CrossRef]
- Mirzadeh, H.; Cabrera, J.M.; Prado, J.M.; Najafizadeh, A. Hot deformation behavior of a medium carbon microalloyed steel. Mater. Sci. Eng. A 2011, 528, 3876–3882. [Google Scholar] [CrossRef]
- Hao, S.M.; Xie, J.P.; Wang, A.Q.; Wang, W.Y.; Li, J.W. Hot Deformation Behavior and Processing Map of SiCp/2024Al Composite. Rare Met. Mater. Eng. 2014, 43, 2912–2916. [Google Scholar] [CrossRef]
- Gangolu, S.; Gourav, R.A.; Sabirov, I.; Kashyap, B.P.; Prabhu, N.; Deshmukh, V.P. Development of constitutive relationship and processing map for Al-6.65Si-0.44Mg alloy and its composite with B4C particulates. Mater. Sci. Eng. A 2016, 655, 256–264. [Google Scholar] [CrossRef]
- Zhao, M.J.; Liu, Y.; Bi, J. Hot deformation behavior of silicon car-bide particulate reinforced 2024 aluminum based composite. Acta Metall. Sin. 2003, 39, 221–224. [Google Scholar] [CrossRef]
- Patel, A.; Das, S.; Prasad, B.K. Compressive deformation be-havior of al alloy (2014–10wt.% SiCp composite: Effects of strain rates and temperatures. Mater. Sci. Eng. A 2011, 530, 225–232. [Google Scholar] [CrossRef]
- Wei, H.L.; Liu, G.Q.; Xiao, X.; Zhang, M.H. Dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel. Mater. Sci. Eng. A 2013, 573, 215–221. [Google Scholar] [CrossRef]
- Zener, C.; Hollomon, J.H. Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 1944, 15, 22–32. [Google Scholar] [CrossRef]
- Wang, Y.; Ling, D.L.; Law, C.C. A correlation between tensile flow stress and Zener-Hollomon factor in TiAl alloys at high temperatures. J. Mater. Sci. Lett. 2000, 19, 1185–1188. [Google Scholar] [CrossRef]
- Sellars, C.M.; Tegart, W.J. Hot workability. Int. Mater. Rev. 1972, 17, 1–24. [Google Scholar] [CrossRef]
- Fernández, R.; González-Doncel, G. Threshold stress and load partitioning during creep of metal matrix composites. Acta Mater. 2008, 56, 2549–2562. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Xiong, L.Y.; Zhang, L.F.; Chen, Z.G.; Wang, S.X.; Cai, D.Y. Hot deformation behavior and microstructure evolution of super alloy GH4199. Trans. Nonferr. Met. Soc. China 2010, 20, 655–661. [Google Scholar] [CrossRef]
- Chen, B.; Tian, X.L.; Li, X.L.; Lu, C. Hot Deformation Behavior and Processing Maps of 2099 Al-Li Alloy. J. Mater. Eng. Perform. 2014, 23, 1929–1935. [Google Scholar] [CrossRef]
- Guo, Y.J.; Deng, L.; Wang, X.Y.; Jin, J.S.; Zhong, W.W. Hot Deformation Behavior and Processing Maps of 7050 Aluminum Alloy. Adv. Mater. Res. 2013, 815, 37–42. [Google Scholar] [CrossRef]
- Liu, J.H.; Liu, J.S.; Xiong, Y.S.; He, W.W.; Zhang, P.; Liu, X.M. Hot deformation and processing maps of TC4-DT titanium alloy. Rare Met. Mater. Eng. 2013, 42, 1674–1678. [Google Scholar] [CrossRef]
- Hu, H.E.; Zhen, L.; Zhong, B.Y.; Yang, L.; Chen, J.Z. Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery. Mater. Charact. 2008, 59, 1185–1189. [Google Scholar] [CrossRef]
- Huang, X.D.; Zhang, H.; Han, Y.; Wu, W.X.; Chen, J.H. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature. Mater. Sci. Eng. A 2010, 527, 485–490. [Google Scholar] [CrossRef]
- Cavaliere, P.; Cerri, E.; Leo, P. Hot deformation and processing maps of a particulate reinforced 2618/Al2O3/20p metal matrix composite. Compos. Sci. Technol. 2004, 64, 1287–1291. [Google Scholar] [CrossRef]
- McQueen, H.J.; Myshlyaev, M.; Konopleva, E.; Sakaris, P. High temperature mechanical and microstructural behavior of A356/15 vol% SiCp and A356 alloy. Can. Metall. Q. 1998, 37, 125–139. [Google Scholar] [CrossRef]
Element | Si | Mg | Cu | Fe | Al |
---|---|---|---|---|---|
Weight Percent | 7.0 | 0.3 | 0.1 | 0.1 | Balance |
Strain Rate/s−1 | Temperature/°C | |||
---|---|---|---|---|
460 | 480 | 500 | 520 | |
0.01 | 65.37618 | 60.13297 | 46.28657 | 36.30753 |
0.1 | 81.61172 | 72.08328 | 60.55818 | 52.44261 |
1 | 82.60639 | 77.8271 | 70.65215 | 61.87151 |
5 | 96.25351 | 87.496 | 79.18527 | 70.3212 |
T/°C | ||||
---|---|---|---|---|
460 | 480 | 500 | 520 | |
0.01 | 67.92850207 | 66.00197691 | 64.17514257 | 62.44045625 |
0.1 | 70.23108716 | 68.304562 | 66.47772766 | 64.74304134 |
1 | 72.53367225 | 70.60714709 | 68.78031276 | 67.04562643 |
5 | 74.14311016 | 72.216585 | 70.38975067 | 68.65506434 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Wang, A.; Ma, D.; Xie, J.; Wang, Z.; Liu, P. Hot-Deformation Behavior and Microstructure Evolution of the Dual-Scale SiCp/A356 Composites Based on Optimal Hot-Processing Parameters. Materials 2020, 13, 2825. https://doi.org/10.3390/ma13122825
Song Y, Wang A, Ma D, Xie J, Wang Z, Liu P. Hot-Deformation Behavior and Microstructure Evolution of the Dual-Scale SiCp/A356 Composites Based on Optimal Hot-Processing Parameters. Materials. 2020; 13(12):2825. https://doi.org/10.3390/ma13122825
Chicago/Turabian StyleSong, Yahu, Aiqin Wang, Douqin Ma, Jingpei Xie, Zhen Wang, and Pei Liu. 2020. "Hot-Deformation Behavior and Microstructure Evolution of the Dual-Scale SiCp/A356 Composites Based on Optimal Hot-Processing Parameters" Materials 13, no. 12: 2825. https://doi.org/10.3390/ma13122825
APA StyleSong, Y., Wang, A., Ma, D., Xie, J., Wang, Z., & Liu, P. (2020). Hot-Deformation Behavior and Microstructure Evolution of the Dual-Scale SiCp/A356 Composites Based on Optimal Hot-Processing Parameters. Materials, 13(12), 2825. https://doi.org/10.3390/ma13122825