Cu/Ce-co-Doped Silica Glass as Radioluminescent Material for Ionizing Radiation Dosimetry
Abstract
1. Introduction
2. Materials and Methods
2.1. Glass Fabrication
2.2. Characterizations
3. Results and Discussion
3.1. Absorption and Photoluminescence
3.2. Radioluminescence
3.3. Radio-Darkening
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chiodini, N.; Vedda, A.; Veronese, I. Rare Earth Doped Silica Optical Fibre Sensors for Dosimetry in Medical and Technical Applications. Adv. Opt. 2014, 2014, 9. [Google Scholar] [CrossRef]
- Bradley, D.A.; Zubair, H.T.; Oresegun, A.; Louay, G.T.; Abdul-Rashid, H.A.; Ung, N.M.; Alzimami, K.S. Towards the development of doped silica radioluminescence dosimetry. Radiat. Phys. Chem. 2019, 154, 46–52. [Google Scholar] [CrossRef]
- Isokawa, Y.; Kimura, H.; Kato, T.; Kawaguchi, N.; Yanagida, T. Radiation induced luminescence properties of Eu-doped SiO2 glass synthesized by spark plasma sintering. Opt. Mat. 2019, 90, 187–193. [Google Scholar] [CrossRef]
- El Hamzaoui, H.; Bouwmans, G.; Capoen, B.; Cassez, A.; Habert, R.; Ouerdane, Y.; Girard, S.; Di Francesca, D.; Kerboub, N.; Morana, A.; et al. Gd3+-doped sol-gel silica glass for remote ionizing radiation dosimetry. OSA Contin. 2019, 2, 715–721. [Google Scholar] [CrossRef]
- Justus, B.L.; Falkenstein, P.; Huston, A.L.; Plazas, M.C.; Ning, H.; Miller, R.W. Gated fiber-optic-coupled detector for in vivo realtime radiation dosimetry. Appl. Opt. 2004, 43, 1663–1668. [Google Scholar] [CrossRef]
- Vedda, A.; Chiodini, N.; Di Martino, D.; Fasoli, M.; Keffer, S.; Lauria, A.; Martini, M.; Moretti, F.; Spinolo, G.; Nikl, M.; et al. Ce3+-doped fibers for remote radiation dosimetry. Appl. Phys. Lett. 2004, 85, 6356–6538. [Google Scholar] [CrossRef]
- Al Helou, N.; El Hamzaoui, H.; Capoen, B.; Bouwmans, G.; Cassez, A.; Ouerdane, Y.; Boukenter, A.; Girard, S.; Chadeyron, G.; Mahiou, R.; et al. Radioluminescence and Optically Stimulated Luminescence Responses of a Cerium-doped Sol-gel Silica Glass under X-ray Beam Irradiation. IEEE Trans. Nucl. Sci. 2018, 65, 1591–1597. [Google Scholar] [CrossRef]
- Al Helou, N.; El Hamzaoui, H.; Capoen, B.; Bouwmans, G.; Cassez, A.; Ouerdane, Y.; Boukenter, A.; Girard, S.; Bouazaoui, M. Optical responses of a copper-activated sol-gel silica glass under low-dose and low-dose rate X-ray exposures. OSA Contin. 2019, 2, 563–571. [Google Scholar] [CrossRef]
- El Hamzaoui, H.; Capoen, B.; Al Helou, N.; Bouwmans, G.; Ouerdane, Y.; Boukenter, A.; Girard, S.; Marcandella, C.; Duhamel, O.; Chadeyron, G.; et al. Cerium-activated sol–gel silica glasses for radiation dosimetry in harsh environment. Mater. Res. Express 2016, 3, 046201. [Google Scholar] [CrossRef]
- Capoen, B.; El Hamzaoui, H.; Bouazaoui, M.; Ouerdane, Y.; Boukenter, A.; Girard, S.; Marcandella, C.; Duhamel, O. Sol-gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry. Opt. Mater. 2016, 51, 104–109. [Google Scholar] [CrossRef]
- El Hamzaoui, H.; Bouwmans, G.; Capoen, B.; Ouerdane, Y.; Chadeyron, G.; Mahiou, R.; Girard, S.; Boukenter, A.; Bouazaoui, M. Effects of densification atmosphere on optical properties of ionic copper-activated sol-gel silica glass: Towards an efficient radiation dosimeter. Mater. Res. Express 2014, 1, 026203. [Google Scholar] [CrossRef]
- Al Helou, N.; El Hamzaoui, H.; Capoen, B.; Ouerdane, Y.; Boukenter, A.; Girard, S.; Bouazaoui, M. Effects of ionizing radiations on the optical properties of ionic copper-activated sol-gel silica glasses. Opt. Mater. 2018, 75, 116–121. [Google Scholar] [CrossRef]
- Stroud, J.S. Color-Center Kinetics in Cerium-Containing Glass. J. Chem. Phys. 1965, 43, 2442–2450. [Google Scholar] [CrossRef]
- Stroud, J.S. Color Centers in a Cerium-Containing Silicate Glass. J. Chem. Phys. 1962, 37, 836–841. [Google Scholar] [CrossRef]
- Girard, S.; Vivona, M.; Laurent, A.; Cadier, B.; Marcandella, C.; Robin, T.; Pinsard, E.; Boukenter, A.; Ouerdane, Y. Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application. Opt. Express 2012, 20, 8457–8465. [Google Scholar] [CrossRef]
- El Hamzaoui, H.; Courthéoux, L.; Nguyen, V.; Berrier, E.; Favre, A.; Bigot, L.; Bouazaoui, M.; Capoen, B. From porous silica xerogels to bulk optical glasses: The control of densification. Mater. Chem. Phys. 2010, 121, 83–88. [Google Scholar] [CrossRef]
- Debnath, R.; Das, S.K. Site-dependent luminescence of Cu+ ions in silica glass. Chem. Phys. Lett. 1989, 155, 52–58. [Google Scholar] [CrossRef]
- Fukumi, K.; Chayahara, A.; Ohora, K.; Kitamura, N.; Horino, Y.; Fujii, K.; Makihara, M.; Hayakaya, J.; Ohno, N. Photoluminescence of Cu+-doped silica glass prepared by MeV ion implantation. Nucl. Instr. Methods Phys. Res. B 1999, 149, 77–80. [Google Scholar] [CrossRef]
- Borsella, E.; Dal Vecchio, A.; Garcìa, M.A.; Sada, C.; Gonella, F.; Polloni, R.; Quaranta, A.; van Wilderen, L.J.G.W. Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study. J. Appl. Phys. 2002, 91, 90–98. [Google Scholar] [CrossRef]
- Ishii, Y.; Arai, K.; Namikawa, H.; Tanaka, M.; Negishi, A.; Handa, T. Preparation of Cerium-Activated Silica Glasses: Phosphorus and Aluminum Codoping Effects on Absorption and Fluorescence Properties. J. Am. Ceram. Soc. 1987, 70, 72–77. [Google Scholar] [CrossRef]
- Gu, Z. Spectroscopic properties of doped silica glasses. J. Non-Cryst. Solids 1982, 52, 337–345. [Google Scholar] [CrossRef]
- Gebavi, H.; Milanese, D.; Taccheo, S.; Mechin, D.; Monteville, A.; Freyria, F.S.; Bonelli, B.; Robin, T. Photodarkening of Infrared Irradiated Yb3+-Doped Alumino-Silicate Glasses: Effect on UV Absorption Bands and Fluorescence Spectra. Fibers 2013, 1, 101–109. [Google Scholar] [CrossRef]
- García, M.A.; Borsella, E.; Paje, S.E.; Llopis, J.; Villegas, M.A.; Polloni, R. Luminescence time decay from Cu+ ions in sol–gel silica coatings. J. Lumin. 2001, 93, 253–259. [Google Scholar] [CrossRef]
- Chewpraditkul, W.; Shen, Y.; Chen, D.; Yu, B.; Prusa, P.; Nikl, M.; Beitlerova, A.; Wanarak, C. Luminescence and scintillation of Ce3+-doped high silica glass. Opt. Mater. 2012, 34, 1762–1766. [Google Scholar] [CrossRef]
- Okada, G.; Kasap, S.; Yanagida, T. Optically- and thermally-stimulated luminescences of Ce-doped SiO2 glasses prepared by spark plasma sintering. Opt. Mater. 2016, 61, 15–20. [Google Scholar] [CrossRef]
- Fasoli, M.; Vedda, A.; Lauria, A.; Moretti, F.; Rizzelli, E.; Chiodini, N.; Meinardi, F.; Nikl, M. Effect of reducing sintering atmosphere on Ce-doped sol-gel silica glasses. J. Non-Cryst. Solids 2009, 355, 1140–1144. [Google Scholar] [CrossRef]
- Munekuni, S.; Yamanaka, T.; Shimogaichi, Y.; Tohmon, R.; Ohki, Y.; Nagasawa, K.; Hama, Y. Various types of non bridging oxygen hole center in high-purity silica glass. J. Appl. Phys. 1990, 68, 1212–1217. [Google Scholar] [CrossRef]
- Sakurai, Y.; Nagasawa, K.; Nishikawa, H.; Ohki, Y. Characteristic red photoluminescence band in oxygen deficient silica glass. J. Appl. Phys. 1999, 86, 370–373. [Google Scholar] [CrossRef]
- Hibino, Y.; Hanafusa, H. Defect structure and formation mechanism of drawing-induced absorption at 630 nm in silica optical fibers. J. Appl. Phys. 1986, 60, 1797–1801. [Google Scholar] [CrossRef]
- Friebele, E.J.; Sigel, G.H., Jr.; Griscom, D.L. Drawing-induced defect centers in a fused silica core fiber. Appl. Phys. Lett. 1976, 28, 516–518. [Google Scholar] [CrossRef]
- Jetschke, S.; Unger, S.; Schwuchow, A.; Leich, M.; Jäger, M. Role of Ce in Yb/Al laser fibers: Prevention of photodarkening and thermal effects. Opt. Express 2016, 24, 13009–13022. [Google Scholar] [CrossRef] [PubMed]
Gaussian Band | RL | PL |
---|---|---|
G1 (NBOHC) | 3.65 | 4.73 |
G2 (Cu+) | 2.13 | 2.55 |
G3 (Cu+) | 39.92 | 35.53 |
G4 (Ce3+) | 12.40 | 7.15 |
G5 (Ce3+) | 41.90 | 50.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahout, J.; Ouerdane, Y.; El Hamzaoui, H.; Bouwmans, G.; Bouazaoui, M.; Cassez, A.; Baudelle, K.; Habert, R.; Morana, A.; Boukenter, A.; et al. Cu/Ce-co-Doped Silica Glass as Radioluminescent Material for Ionizing Radiation Dosimetry. Materials 2020, 13, 2611. https://doi.org/10.3390/ma13112611
Bahout J, Ouerdane Y, El Hamzaoui H, Bouwmans G, Bouazaoui M, Cassez A, Baudelle K, Habert R, Morana A, Boukenter A, et al. Cu/Ce-co-Doped Silica Glass as Radioluminescent Material for Ionizing Radiation Dosimetry. Materials. 2020; 13(11):2611. https://doi.org/10.3390/ma13112611
Chicago/Turabian StyleBahout, Jessica, Youcef Ouerdane, Hicham El Hamzaoui, Géraud Bouwmans, Mohamed Bouazaoui, Andy Cassez, Karen Baudelle, Rémi Habert, Adriana Morana, Aziz Boukenter, and et al. 2020. "Cu/Ce-co-Doped Silica Glass as Radioluminescent Material for Ionizing Radiation Dosimetry" Materials 13, no. 11: 2611. https://doi.org/10.3390/ma13112611
APA StyleBahout, J., Ouerdane, Y., El Hamzaoui, H., Bouwmans, G., Bouazaoui, M., Cassez, A., Baudelle, K., Habert, R., Morana, A., Boukenter, A., Girard, S., & Capoen, B. (2020). Cu/Ce-co-Doped Silica Glass as Radioluminescent Material for Ionizing Radiation Dosimetry. Materials, 13(11), 2611. https://doi.org/10.3390/ma13112611