Next Article in Journal
Experimental Studies on Durability of PVD-Based CrCN/CrN-Coated Cutting Blade of Planer Knives Used in the Pine Wood Planing Process
Next Article in Special Issue
Microstructural Investigations of Ni-Based Superalloys by Directional Solidification Quenching Technique
Previous Article in Journal
Study of Carbon Black Types in SBR Rubber: Mechanical and Vibration Damping Properties
Previous Article in Special Issue
Fabrication and Characterization of the Newly Developed Superalloys Based on Inconel 740
Article

Characterization of γ′ Precipitates in Cast Ni-Based Superalloy and Their Behaviour at High-Homologous Temperatures Studied by TEM and in Situ XRD

1
Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland
2
Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
3
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
4
Consolidated Precision Products, Investment Casting Division, Hetmańska 120, 35-078 Rzeszów, Poland
5
Lukasiewicz Research Network-Krakow Institute of Technology, Zakopianska 73, 30-418 Krakow, Poland
6
Faculty of Materials, Metallurgy and Recycling, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
*
Author to whom correspondence should be addressed.
Materials 2020, 13(10), 2397; https://doi.org/10.3390/ma13102397
Received: 23 April 2020 / Revised: 13 May 2020 / Accepted: 20 May 2020 / Published: 22 May 2020
In situ X-ray diffraction and transmission electron microscopy has been used to investigate René 108 Ni-based superalloy after short-term annealing at high-homologous temperatures. Current work is focused on characterisation of γ′ precipitates, their volume fraction, evolution of the lattice parameter of γ and γ′ phases and misfit parameter of γ′ in the matrix. Material in the initial condition is characterised by a high-volume fraction (over 63%) of γ′ precipitates. Irregular distribution of alloying elements was observed. Matrix channels were strongly enriched in Cr, Co, W and Mo, whereas precipitates contain large amount of Al, Ti, Ta and Hf. Exposure to high-homologous temperatures in the range 1100–1250 °C led to the dissolution of the precipitates, which influenced the change of lattice parameter of both γ and γ′ phases. The lattice parameter of the matrix continuously grew during holding at high temperatures, which had a dominant influence on the more negative misfit coefficient. View Full-Text
Keywords: misfit; in situ XRD; lattice parameter; STEM; gamma prime; dissolution misfit; in situ XRD; lattice parameter; STEM; gamma prime; dissolution
Show Figures

Figure 1

MDPI and ACS Style

Rakoczy, Ł.; Milkovič, O.; Rutkowski, B.; Cygan, R.; Grudzień-Rakoczy, M.; Kromka, F.; Zielińska-Lipiec, A. Characterization of γ′ Precipitates in Cast Ni-Based Superalloy and Their Behaviour at High-Homologous Temperatures Studied by TEM and in Situ XRD. Materials 2020, 13, 2397. https://doi.org/10.3390/ma13102397

AMA Style

Rakoczy Ł, Milkovič O, Rutkowski B, Cygan R, Grudzień-Rakoczy M, Kromka F, Zielińska-Lipiec A. Characterization of γ′ Precipitates in Cast Ni-Based Superalloy and Their Behaviour at High-Homologous Temperatures Studied by TEM and in Situ XRD. Materials. 2020; 13(10):2397. https://doi.org/10.3390/ma13102397

Chicago/Turabian Style

Rakoczy, Łukasz, Ondrej Milkovič, Bogdan Rutkowski, Rafał Cygan, Małgorzata Grudzień-Rakoczy, František Kromka, and Anna Zielińska-Lipiec. 2020. "Characterization of γ′ Precipitates in Cast Ni-Based Superalloy and Their Behaviour at High-Homologous Temperatures Studied by TEM and in Situ XRD" Materials 13, no. 10: 2397. https://doi.org/10.3390/ma13102397

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop