Dendrimers as Pharmaceutical Excipients: Synthesis, Properties, Toxicity and Biomedical Applications
Abstract
:1. Introduction
2. Dendrimers
2.1. Definition and Structure
2.2. Synthesis
2.2.1. Classical Synthesis Pathways
Divergent Growth Method
Convergent Growth Method
2.2.2. Accelerated Approaches
Double Exponential Growth Technique
Double-Stage Convergent Method or Hypercore Approach
Hypermonomer Method, or the Branched Monomer Approach
2.2.3. Advantages and Limitations of Synthetic Methods
2.3. Physicochemical Properties
2.3.1. Nanoscale Size
2.3.2. Higher Solubilization Potential
2.3.3. Monodispersity
2.3.4. Low Viscosity
2.3.5. Multivalent Surface
2.3.6. High Loading Capacity
2.3.7. Conformational Behavior
Dendrimers and the Effect of pH
Dendrimers and the Effect of Salts
Dendrimers and the Effect of the Solvent
3. Biodistribution and Toxicity
3.1. Biodistribution of Dendrimers
3.2. Toxicity of Dendrimers
3.2.1. Membrane Interaction
3.2.2. Hemolytic Toxicity
3.2.3. Cytokine Release
3.2.4. Immunogenicity
3.3. Solutions for Toxicity Issues
3.3.1. Biocompatible or Biodegradable Dendrimers
3.3.2. Surface Engineered Dendrimers
4. Application of Dendrimers as Drug-Delivery Systems
4.1. Dendrimers in Ocular Drug Delivery
4.2. Dendrimers in Oral Drug Delivery
4.3. Dendrimers in Intravenous Drug Delivery
4.4. Dendrimers in Pulmonary Drug Delivery
4.5. Dendrimers in Central Nervous Systems (CNS) Drug Delivery
4.6. Dendrimers in Transdermal Drug Delivery
4.7. Dendrimers in Nasal Drug Delivery
4.8. Dendrimers in Gene Delivery
4.9. Dendrimers in Vaccines
5. Patents
6. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Huang, Y.W.; Cambre, M.; Lee, H.J. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. Int. J. Mol. Sci. 2017, 18, 2702. [Google Scholar] [CrossRef] [Green Version]
- Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part. Fibre Toxicol. 2005, 2, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, E.; Soltantabar, P.; Webster, T.J. Nanotechnology and picotechnology. In Biomaterials in Translational Medicine; Elsevier Inc.: London, UK, 2019; pp. 191–212. [Google Scholar]
- Pillai, G. Nanotechnology Toward Treating Cancer: A Comprehensive Review. In Applications of Targeted Nano Drugs and Delivery Systems; Elsevier Inc.: London, UK, 2019; pp. 221–256. [Google Scholar]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use Biopharmaceutics Classification System-based Biowaivers. Available online: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M9/M9EWG_DraftGuideline_Step2_2018_0606.pdf (accessed on 5 August 2019).
- Svenson, S.; Chauhan, A.S. Dendrimers for enhanced drug solubilization. Future Med. 2008, 3, 679–702. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Guideline On Excipients In The Dossier For Application For Marketing Authorisation Of A Medicinal Product. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-excipients-dossier-application-marketing-authorisation-medicinal-product-revision-2_en.pdf (accessed on 7 August 2019).
- U.S. Food and Drug Administration CFR - Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=210.3 (accessed on 1 August 2019).
- European Commission. Excipients in the Label and Package Leaflet of Medicinal Products for Human Use. Available online: https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-2/c/guidelines_excipients_march2018_en.pdf (accessed on 10 August 2019).
- Roy, U.; Rodríguez, J.; Barber, P.; Das Neves, J.; Sarmento, B.; Nair, M. The potential of HIV-1 nanotherapeutics: From in vitro studies to clinical trials. Nanomedicine 2015, 10, 3597–3609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, L.P.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017, 22, 1401. [Google Scholar] [CrossRef] [Green Version]
- Siepmann, J.; Faham, A.; Clas, S.D.; Boyd, B.J.; Jannin, V.; Bernkop-Schnürch, A.; Zhao, H.; Lecommandoux, S.; Evans, J.C.; Allen, C.; et al. Lipids and polymers in pharmaceutical technology: Lifelong companions. Int. J. Pharm. 2018, 558, 128–148. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Park, E.J.; Na, D.H. Recent progress in dendrimer-based nanomedicine development. Arch. Pharm. Res. 2018, 41, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Durocher, I.; Girard, D. In vivo proinflammatory activity of generations 0–3 (G0–G3) polyamidoamine (PAMAM ) nanoparticles. Inflamm. Res. 2016, 65, 745–755. [Google Scholar] [CrossRef]
- Scorciapino, M.A.; Serra, I.; Manzo, G.; Rinaldi, A.C. Antimicrobial Dendrimeric Peptides: Structure, Activity and New Therapeutic Applications. Int. J. Mol. Sci. 2017, 18, 542. [Google Scholar] [CrossRef] [Green Version]
- Otto, D.P.; de Villiers, M.M. Poly (amidoamine) Dendrimers as a Pharmaceutical Excipient. Are We There yet? J. Pharm. Sci. 2018, 107, 75–83. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Lin, H.; Yu, Y.; Shi, L.; Tu, J. Precisely Defined Polymers for Efficient Gene Delivery. Polym. Gene Deliv. Syst. 2018, 376, 149–165. [Google Scholar]
- Abd, A.S.; Aziz, E.; Agatemor, C. Emerging Opportunities in the Biomedical Applications of Dendrimers. J. Inorg. Organomet. Polym. Mater. 2018, 28, 369–382. [Google Scholar]
- Noor, A.; Mahmood, W.; Afreen, A.; Uzma, S. Dendrimers as Novel Formultion in Nanotechnology Based Targeted Drug Delivery. World J. Pharm. Pharm. Sci. 2015, 4, 1509–1523. [Google Scholar]
- Boyd, B.J. Past and future evolution in colloidal drug delivery systems. Expert Opin. Drug Deliv. 2008, 5, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Mignani, S.M.; Bryszewska, M.; Klajnert-maculewicz, B.; Zablocka, M.; Majoral, J. Advances in Combination Therapies Based on Nanoparticles for Efficacious Cancer Treatment: An Analytical Report. Biomacromolecules 2014, 16, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.K.; Gajbhiye, V.; Sharma, R.; Kumar, N.; Tiwari, A.K.; Gajbhiye, V.; Sharma, R.; Jain, N.K. Carrier mediated protein and peptide stabilization Carrier mediated protein and peptide stabilization. Drug Deliv. 2010, 17, 605–616. [Google Scholar] [CrossRef]
- Wang, H.; Chang, H.; Zhang, Q.; Cheng, Y. Fabrication of Low-Generation Dendrimers into Nanostructures for Efficient and Nontoxic Gene. Polym. Gene Deliv. Syst. 2017, 375, 217–232. [Google Scholar]
- Boas, U.; Christensen, J.B.; Heegaard, P.M.H. Dendrimers: Design, Synthesis and Chemical Properties. In Dendrimers in Medicine and Biotechnology. New Molecular Tools; The Royal Society of Chemistry: Cambridge, UK, 2006; pp. 1–27. [Google Scholar]
- Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm. 2018, 548, 707–720. [Google Scholar] [CrossRef]
- Parry, Z.A.; Pandey, R. The Concept Of Dendrimers. In Dendrimers in Medical Sience; Taylor & Francis Group, Ed.; Apple Academic Press: Oakvile, Canada, 2015; pp. 9–16. [Google Scholar]
- Chauhan, A.S. Dendrimers for Drug Delivery. Molecules 2018, 23, 938. [Google Scholar] [CrossRef] [Green Version]
- Park, E.J.; Kim, J.; Kim, K.; Park, J. Glucosamine-conjugated Anionic Poly (amidoamine) Dendrimers Inhibit Interleukin-8 Production by Helicobacter pylori in Gastric Epithelial Cells. Bull. Korean Chem. Soc. 2016, 37, 596–599. [Google Scholar] [CrossRef]
- Rupp, R. VivaGelTM (SPL7013 Gel): A candidate dendrimer–microbicide for the prevention of HIV and HSV infection. Int. J. Nanomed. 2007, 2, 561–566. [Google Scholar]
- Price, C.F.; Tyssen, D.; Sonza, S.; Davie, A.; Evans, S.; Lewis, G.R.; Spelman, T.; Hodsman, P.; Moench, T.R.; Humberstone, A. SPL7013 Gel ( VivaGel H ) Retains Potent HIV-1 and HSV-2 Inhibitory Activity following Vaginal Administration in Humans. PLoS ONE 2011, 6, e24095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antimisiaris, S.G.; Mourtas, S. Recent advances on anti-HIV vaginal delivery systems development. Adv. Drug Deliv. Rev. 2015, 23, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Nandy, B.; Saurabh, S.; Sahoo, A.K.; Dixit, N.M.; Maiti, P.K. The SPL7013 dendrimer destabilizes the HIV-1 gp120–CD4 complex. Nanoscale 2015, 7, 18628–18641. [Google Scholar] [CrossRef]
- Kannan, R.M.; Nance, E.; Kannan, S.; Tomalia, D.A. Emerging concepts in dendrimer-based nanomedicine: From design principles to clinical applications. J. Intern. Med. 2014, 276, 579–617. [Google Scholar] [CrossRef]
- Li, J.; Yu, F.; Chen, Y.; Yu, F.; Chen, Y. Polymeric Drugs: Advances in the Development of Pharmacologically Active Polymers Jing. J. Control. Release 2015, 219, 369–382. [Google Scholar] [CrossRef] [Green Version]
- Abrantes, C.G.; Duarte, D.; Reis, C.P. An Overview of Pharmaceutical Excipients: Safe or Not Safe? J. Pharm. Sci. 2016, 105, 2019–2026. [Google Scholar] [CrossRef]
- Chaudhary, S.; Gothwal, A.; Khan, I.; Srivastava, S.; Malik, R.; Gupta, U. Polypropyleneimine and polyamidoamine dendrimer mediated enhanced solubilization of bortezomib: Comparison and evaluation of mechanistic aspects by thermodynamics and molecular simulations. Mater. Sci. Eng. C 2016, 72, 611–619. [Google Scholar] [CrossRef]
- Sadler, K.; Tam, J.P. Peptide dendrimers: Applications and synthesis. Mol. Biotechnol. 2002, 90, 195–229. [Google Scholar] [CrossRef]
- Miguel, J.; José, A.; Sousa, N.; Filipe, J.; Luís, R. Progress in Polymer Science Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—A review. Prog. Polym. Sci. 2010, 35, 1163–1194. [Google Scholar]
- Zhao, J.; Weng, G.; Li, J.; Zhu, J.; Zhao, J. Polyester-based nanoparticles for nucleic acid delivery. Mater. Sci. Eng. C 2018, 92, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Perisé-Barrios, A.J.; Jiménez, J.L.; Domínguez-Soto, A.; Mata, F.J.; Corbí, A.L.; Gomez, R.; Fernandez, M.Á.M. Carbosilane dendrimers as gene delivery agents for the treatment of HIV infection. J. Control. Release 2014, 184, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Vinicius, R.; Ara, D.; Santos, S.; Ferreira, E.I.; Giarolla, J. New Advances in General Biomedical Applications of PAMAM Dendrimer. Molecules 2018, 23, 2849. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, B.; Bozdaǧ Pehlivan, S.; Ünlü, N. Dendrimeric systems and their applications in ocular drug delivery. Sci. World J. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Thomas, C.; Ahsan, F. Dendrimers as a Carrier for Pulmonary Delivery of Enoxaparin, a Low-Molecular Weight Heparin. J. Pharm. Sci. 2007, 96, 2090–2106. [Google Scholar] [CrossRef] [PubMed]
- Yiyun, C.; Na, M.; Tongwen, X.; Rongqiang, F.; Xueyuan, W.; Xang, W.; Longping, W. Transdermal Delivery of Nonsteroidal Anti-Inflammatory Drugs Mediated by Polyamidoamine (PAMAM) Dendrimers. J. Pharm. Sci. 2007, 96, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Caminade, A.M.; Laurent, R.; Delavaux-Nicot, B.; Majoral, J.P. “Janus” dendrimers: Syntheses and properties. New J. Chem. 2012, 36, 217–226. [Google Scholar] [CrossRef]
- Sikwal, D.R.; Kalhapure, R.S.; Govender, T. An emerging class of amphiphilic dendrimers for pharmaceutical and biomedical applications: Janus amphiphilic dendrimers. Eur. J. Pharm. Sci. 2016, 97, 113–134. [Google Scholar] [CrossRef]
- Ouyang, L.; Li, Y.; Pan, J.; Guo, L. Synthesis of water-soluble first generation Janus-Type dendrimers bearing Asp oligopeptides and naproxen. Arkivoc 2010, 2, 256–266. [Google Scholar]
- Pan, J.; Wen, M.; Yin, D.; Jiang, B.; He, D.; Guo, L. Design and synthesis of novel amphiphilic Janus dendrimers for bone-targeted drug delivery. Tetrahedron 2012, 68, 2943–2949. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Yu, T.; Chen, C.; Cheng, Q.; Sengupta, K.; Huang, Y.; Li, H.; Liu, C.; Wang, Y. Adaptive Amphiphilic Dendrimer-Based Nanoassemblies as Robust and Versatile siRNA Delivery Systems. Angew. Chem. Int. Ed. 2014, 53, 11822–11827. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett. 2014, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhary, S.; Gupta, L.; Rani, S.; Dave, K.; Gupta, U. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Front. Pharmacol. 2017, 8, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parata, A.; Felder-Flescha, D. General Introduction on Dendrimers, Classical versus Accelerated Syntheses and Characterizations. In Dendrimers in Nanomedicine; Jenny Stanford Publishing: New York, NY, USA, 2016; pp. 1–22. [Google Scholar]
- Grayson, S.M.; Fréchet, J.M. Convergent dendrons and dendrimers: From synthesis to applications. Chem. Rev. 2001, 101, 3819–3867. [Google Scholar] [CrossRef]
- Caminade, A.M.; Turrin, C.O.; Laurent, R.; Ouali, A.; Delavaux-Nicot, B. Syntheses of Dendrimers and Dendrons. In Dendrimers: Towards Catalytic, Material and Biomedical Uses; John Wiley & Sons: Chichester, West Sussex, UK, 2011; pp. 1–33. [Google Scholar]
- Kesharwani, S.; Jaiswal, P.K.; Kesharwani, R.; Kumar, V.; Patel, D.K. Dendrimer: A Novel Approach for Drug Delivery. J. Pharm. Sci. Innov. 2016, 5, 54–62. [Google Scholar] [CrossRef]
- Mathur, V.; Satrawala, Y.; Rajput, M.S. Dendrimers: A Review. Inventi Impact NDDS 2015, 1. [Google Scholar]
- Wooley, K.L.; Hawker, C.J.; Frechet, J.M.J. Hyperbranched macromolecules via a novel double-stage convergent growth approach. J. Am. Chem. Soc. 1991, 113, 4252–4261. [Google Scholar] [CrossRef]
- Maraval, V.; Caminade, A.M.; Majoral, J.P.; Blais, J.C. Dendrimer design: How to circumvent the dilemma of a reduction of steps or an increase of function multiplicity? Angew. Chem. Int. Ed. 2003, 42, 1822–1826. [Google Scholar] [CrossRef]
- Markowicz-Piasecka, M.; Mikiciuk-Olasik, E. Dendrimers in drug delivery. In Nanobiomaterials in Drug Delivery: Applications of Nanobiomaterials; Grumezescu, A.M., Ed.; Elsevier Inc.: Oxford, UK, 2016; pp. 39–74. [Google Scholar]
- Xu, Q.; Wang, C.-H.; Wayne Pack, D. Polymeric Carriers for Gene Delivery: Chitosan and Poly (amidoamine) Dendrimers. Curr. Pharm. Des. 2010, 16, 2350–2368. [Google Scholar] [CrossRef] [Green Version]
- Tomalia, D.A.; Fréchet, J.M.J. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 2719–2728. [Google Scholar] [CrossRef]
- Majoros, I.J.; Baker, J.R. Dendrimer-Based Nanomedicine, 1st ed.; Pan Stanford Publishing Pte. Ltd.: New York, NY, USA, 2008. [Google Scholar]
- Chauhan, A.S.; Jain, N.K.; Diwan, P.V.; Khopade, A.J. Solubility enhancement of indomethacin with poly (amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats. J. Drug Target. 2004, 12, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci. 2000, 25, 453–571. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Maurya, S.D.; Das, M.K.; Tilak, V.K.; Verma, K.K.; Dhakar, R.C. Dendrimers in Drug Delivery, Diagnosis and Therapy: Basics and Potential Applications. J. Drug Deliv. Ther. 2016, 6, 67–92. [Google Scholar] [CrossRef]
- Maiti, P.K.; Çaǧın, T.; Lin, S.-T.; Goddard, W.A. Effect of Solvent and pH on the Structure of PAMAM Dendrimers. Macromolecules 2005, 38, 979–991. [Google Scholar] [CrossRef]
- Kumar, P.P.; Meena, K.; Kumar, P.; Choudhary, C.; Singh Thakur, D.; Bajpayee, P. Dendrimer: A novel polymer for drug delivery. J. Innov. Trends Pharm. Sci. 2010, 1, 252–269. [Google Scholar]
- Gillies, E.R.; Fréchet, J.M.J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 2005, 10, 35–43. [Google Scholar] [CrossRef]
- Lu, Y.; An, L.; Wang, Z.G. Intrinsic viscosity of polymers: General theory based on a partially permeable sphere model. Macromolecules 2013, 46, 5731–5740. [Google Scholar] [CrossRef]
- Mulder, A.; Huskens, J.; Reinhoudt, D.N. Multivalency in supramolecular chemistry and nanofabrication. Org. Biomol. Chem. 2004, 2, 3409–3424. [Google Scholar] [CrossRef]
- Mishra, I. Dendrimer: A Novel Drug Delivery System. J. Drug Deliv. Ther. 2016, 1, 70–74. [Google Scholar] [CrossRef]
- Mane, P.P.; Jadhav, V.S.; Humbe, V.P.; Hakke, S.C.; Kale, B.B. Dendrimer: A novel polymer and tool for drug delivery. Am. J. Pharm Res. 2014, 4, 3851–3862. [Google Scholar]
- Yang, H.; Lopina, S.T. Penicillin V-conjugated PEG-PAMAM star polymers. J. Biomater. Sci. Polym. Ed. 2003, 14, 1043–1056. [Google Scholar] [CrossRef] [PubMed]
- Garg, T.; Singh, O.; Arora, S.; Murthy, R.S.R. Dendrimer—A novel scaffold for drug delivery. Int. J. Pharm. Sci. Rev. Res. 2011, 7, 211–220. [Google Scholar]
- Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as Drug Carriers: Applications in Different Routes of Drug Administration. J. Pharm. Sci. 2008, 97, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Sampathkumar, S.; Yarema, K.J. Dendrimers in Cancer Treatment and Diagnosis. In Nanomaterial for Cancer Diagnosis; Kumar, C.S.S.R., Ed.; Wiley VCH: Weinheim, Germany, 2007; Volume 7, pp. 1–43. [Google Scholar]
- Diaz, C.; Guzmán, J.; Jiménez, V.A.; Alderete, J.B. Partially PEGylated PAMAM dendrimers as solubility enhancers of Silybin. Pharm. Dev. Technol. 2018, 23, 689–696. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Y.; Wei, L.; Teng, Y.G.; Honda, T.; Ojima, I. Design, synthesis, and biological evaluations of asymmetric bow-tie PAMAM dendrimer-based conjugates for tumor-targeted drug delivery. ACS Omega 2018, 3, 3717–3736. [Google Scholar] [CrossRef] [Green Version]
- Dichwalkar, T.; Patel, S.; Bapat, S.; Pancholi, P.; Jasani, N.; Desai, B.; Yellepeddi, V.K.; Sehdev, V. Omega-3 Fatty Acid Grafted PAMAM-Paclitaxel Conjugate Exhibits Enhanced Anticancer Activity in Upper Gastrointestinal Cancer Cells. Macromol. Biosci. 2017, 17, 1–12. [Google Scholar] [CrossRef]
- Gupta, L.; Sharma, A.K.; Gothwal, A.; Khan, M.S.; Khinchi, M.P.; Qayum, A.; Singh, S.K.; Gupta, U. Dendrimer encapsulated and conjugated delivery of berberine: A novel approach mitigating toxicity and improving in vivo pharmacokinetics. Int. J. Pharm. 2017, 528, 88–99. [Google Scholar] [CrossRef]
- Abdou, E.M.; Masoud, M.M. Gallic Acid–PAMAM and Gallic Acid–Phospholipid Conjugates, Physicochemical Characterization and In Vivo Evaluation. Pharm. Dev. Technol. 2018, 23, 55–66. [Google Scholar] [CrossRef]
- Yesil-Celiktas, O.; Pala, C.; Cetin-Uyanikgil, E.O.; Sevimli-Gur, C. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells. Anal. Biochem. 2017, 519, 1–7. [Google Scholar] [CrossRef]
- Pentek, T.; Newenhouse, E.; O’Brien, B.; Singh Chauhan, A. Development of a Topical Resveratrol Formulation for Commercial Applications Using Dendrimer Nanotechnology. Molecules 2017, 22, 137. [Google Scholar] [CrossRef] [Green Version]
- Gupta, U.; Agashe, H.B.; Jain, N.K. Polypropylene imine dendrimer mediated solubility enhancement: Effect of pH and functional groups of hydrophobes. J. Pharm. Pharm. Sci. 2007, 10, 358–367. [Google Scholar] [PubMed]
- Ramzi, A.; Scherrenberg, R.; Joosten, J.; Lemstra, P.; Mortensen, K. Structure-property relations in dendritic polyelectrolyte solutions at different ionic strength. Macromolecules 2002, 35, 827–833. [Google Scholar] [CrossRef]
- Chai, M.; Niu, Y.; Youngs, W.J.; Rinaldi, P.L. Structure and Conformation of DAB Dendrimers in Solution via Multidimensional NMR Techniques. J. Am. Chem. Soc. 2001, 123, 4670–4678. [Google Scholar] [CrossRef] [PubMed]
- Maysinger, D. Nanoparticles and cells: Good companions and doomed partnerships. Org. Biomol. Chem. 2007, 5, 2335–2342. [Google Scholar] [CrossRef]
- Kouwska-Latallo, J.F.; Candido, K.A.; Cao, Z.; Nigavekar, S.S.; Majoros, I.J.; Thomas, T.P.; Balogh, L.P.; Khan, M.K.; Baker, J.R.J. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005, 65, 5317–5324. [Google Scholar] [CrossRef] [Green Version]
- Majoros, I.J.; Williams, C.R.; Baker, J.R. Current dendrimer applications in cancer diagnosis and therapy. Curr. Top. Med. Chem. 2008, 8, 1165–1179. [Google Scholar] [CrossRef]
- Duncan, R.; Izzo, L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev. 2005, 57, 2215–2237. [Google Scholar] [CrossRef]
- Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J.W.; Meijer, E.W.; Paulus, W.; Duncan, R. Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release 2000, 68, 133–148. [Google Scholar] [CrossRef]
- Liu, M.; Fréchet, J.M.J. Designing dendrimers for drug delivery. Pharm. Sci. Technol. Today 1999, 2, 393–401. [Google Scholar] [CrossRef]
- Lee, H.; Larson, R. Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: The effect of molecular shape. J. Phys. Chem. B 2008, 112, 12279–12285. [Google Scholar] [CrossRef] [Green Version]
- Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N.K. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm. 2010, 394, 122–142. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, D.; Yadav, A.K.; Bhadra, S.; Jain, N.K. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int. J. Pharm. 2005, 295, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Naha, P.C.; Davoren, M.; Lyng, F.M.; Byrne, H.J. Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicol. Appl. Pharmacol. 2010, 246, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Avti, P.K.; Kakkar, A. Dendrimers as anti-inflammatory agents. Braz. J. Pharm. Sci. 2013, 49, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.C.; Bhalgat, M.K.; Zera, R.T. Preliminary biological evaluation of polyamidoamine (PAMAM) starburst-TM dendrimers. J. Biomed. Mater. Res. 1996, 30, 53–65. [Google Scholar] [CrossRef]
- Agashe, H.B.; Dutta, T.; Garg, M.; Jain, N.K. Investigations on the toxicological profile of functionalized fifth-generation poly (propylene imine) dendrimer. J. Pharm. Pharmacol. 2006, 58, 1491–1498. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, L.; Li, Y.; Xu, T. Design of biocompatible dendrimers for cancer diagnosis and therapy: Current status and future perspectives. Chem. Soc. Rev. 2011, 40, 2673–2703. [Google Scholar] [CrossRef]
- Agrawal, P.; Gupta, U.; Jain, N.K. Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials 2007, 28, 3349–3359. [Google Scholar] [CrossRef]
- Twibanire, J.D.; Grindley, T.B. Polyester dendrimers: Smart carriers for drug delivery. Polymers 2014, 6, 179–213. [Google Scholar] [CrossRef] [Green Version]
- Rama Krishna, T.; Jain, S.; Tatu, U.; Jayaraman, N. Synthesis and Biological Evaluation of 3-amino-propan-1-ol based poly (ether imine) dendrimers. Tetrahedron 2005, 61, 4281–4288. [Google Scholar] [CrossRef]
- Domański, D.M.; Bryszewska, M.; Salamończyk, G. Preliminary evaluation of the behavior of fifth-generation thiophosphate dendrimer in biological systems. Biomacromolecules 2004, 5, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Neerman, M.F.; Chen, H.-T.; Parrish, A.R.; Simanek, E.E. Reduction of Drug Toxicity Using Dendrimers Based on Melamine. Mol. Pharm. 2004, 1, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Zeister, M. Progress Toward Biodegradable Triazine Dendrimers Using Triazinyl Hydrazone Linkages; Departamental Honors; Texas Christian University: Fort Worth, TX, USA, 2015. [Google Scholar]
- Bhadra, D.; Bhadra, S.; Jain, S.; Jain, N.K. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm. 2003, 257, 111–124. [Google Scholar] [CrossRef]
- Klajnert, B.; Appelhans, D.; Komber, H.; Morgner, N.; Schwarz, S.; Richter, S.; Brutschy, B.; Ionov, M.; Tonkikh, A.K.; Bryszewska, M. The influence of densely organized maltose shells on the biological properties of poly (propylene imine) dendrimers: New effects dependent on hydrogen bonding. Chem. A Eur. J. 2008, 14, 7030–7041. [Google Scholar] [CrossRef] [PubMed]
- Ghandehari, H.; Kolhatkar, R.B.; Kitchens, K.M.; Swaan, P.W. Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjugate Chem. 2007, 18, 2054–2060. [Google Scholar]
- Jevprasesphant, R.; Penny, J.; Jalal, R.; Attwood, D.; Mckeown, N.B.; Emanuele, A.D. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm. 2003, 252, 263–266. [Google Scholar] [CrossRef]
- Yang, H.; Kao, W.J. Synthesis and characterization of nanoscale dendritic RGD clusters for potential applications in tissue engineering and drug delivery. Int. J. Nanomed. 2007, 2, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Asthana, A.; Chauhan, A.S.; Diwan, P.V.; Jain, N.K. Poly (amidoamine) (PAMAM) dendritic nanostructures for controlled sitespecific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech 2005, 6, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Desai, A.M.; Baker, J.R.; Thomas, T.P.; Patri, A.K.; Peters, J.L.; Kukowska-Latallo, J.; Shukla, R.; Kotlyar, A. HER2 Specific Tumor Targeting with Dendrimer Conjugated Anti-HER2 mAb. Bioconjugate Chem. 2006, 17, 1109–1115. [Google Scholar]
- Dutta, T.; Garg, M.; Jain, N.K. Targeting of efavirenz loaded tuftsin conjugated poly (propyleneimine) dendrimers to HIV infected macrophages in vitro. Eur. J. Pharm. Sci. 2008, 34, 181–189. [Google Scholar] [CrossRef]
- Singh, P.; Gupta, U.; Asthana, A.; Jain, N.K. Folate and folate-PEG-PAMAM dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chem. 2008, 19, 2239–2252. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, V.; Patel, U.; Bhimani1, B.; Daslaniya, D.; Patel, G.; Vyas, B. Dendrimer: Polymer of 21st Century. J. Pharm. Int. J. Pharm. Res. Bio-Sci. 2012, 1, 1–21. [Google Scholar]
- Kolhe, P.; Khandare, J.; Pillai, O.; Kannan, S.; Lieh-Lai, M.; Kannan, R.M. Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials 2006, 27, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Florence, A.T.; Sakthivel, T.; Toth, I. Oral uptake and translocation of a polylysine dendrimer with a lipid surface. J. Control. Release 2000, 65, 253–259. [Google Scholar] [CrossRef]
- Malik, N.; Evagorou, E.G.; Duncan, R. Dendrimer-platinate: A novel approach to cancer chemotherapy. Anti-Cancer Drugs 1999, 10, 767–776. [Google Scholar] [CrossRef]
- Lee, C.C.; Gillies, E.R.; Fox, M.E.; Guillaudeu, S.J.; Fréchet, J.M.J.; Dy, E.E.; Szoka, F.C. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. USA 2006, 103, 16649–16654. [Google Scholar] [CrossRef] [Green Version]
- Mehta, P.; Kadam, S.; Pawar, A.; Bothiraja, C. Dendrimers for pulmonary delivery: Current perspectives and future challenges. New J. Chem. 2019, 43, 8396–8409. [Google Scholar] [CrossRef]
- Parajapati, S.K.; Maurya, S.D.; Das, M.K.; Tilak, V.K.; Verma, K.K.; Dhakar, R.C. Potential Application of Dendrimers in Drug Delivery: A Concise Review and Update. J. Drug Deliv. Ther. 2016, 6, 71–88. [Google Scholar] [CrossRef]
- Katare, Y.K.; Daya, R.P.; Sookram Gray, C.; Luckham, R.E.; Bhandari, J.; Chauhan, A.S.; Mishra, R.K. Brain Targeting of a Water Insoluble Antipsychotic Drug Haloperidol via the Intranasal Route Using PAMAM Dendrimer. Mol. Pharm. 2015, 12, 3380–3388. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, A.S.; Sridevi, S.; Chalasani, K.B.; Jain, A.K.; Jain, S.K.; Jain, N.K.; Diwan, P.V. Dendrimer-mediated transdermal delivery: Enhanced bioavailability of indomethacin. J. Control. Release 2003, 90, 335–343. [Google Scholar] [CrossRef]
- Perez, A.P.; Mundiña-Weilenmann, C.; Romerto, E.L.; Morilla, M.J. Increased brain radioactivity by intranasal 32P-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels. Int. J. Nanomed. 2012, 2, 1373–1385. [Google Scholar]
- Luo, D.; Haverstick, K.; Belcheva, N.; Han, E.; Saltzman, W. Poly (ethylene glycol)-Conjugated PAMAM Dendrimer for Biocompatible, High-Efficiency DNA Delivery. Macromolecules 2002, 35, 3456–3462. [Google Scholar] [CrossRef]
- Bermejo, J.F.; Ortega, P.; Chonco, L.; Eritja, R.; Samaniego, R.; Müllner, M.; Jesus, E.; de la Mata, F.J.; Flores, J.C.; Gomez, R.; et al. Water-Soluble Carbosilane Dendrimers: Synthesis Biocompatibility and Complexation with Oligonucleotides. Chem. A Eur. J. 2007, 13, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Parthasarathy, R.; Botwin, K.; Kunneman, D.; Rowold, E.; Lange, G.; Klover, J.; Abegg, A.; Zobel, J.; Beck, T. Biochemical and immunological properties of cytokines conjugated to dendritic polymers. Biomed. Microdevices 2004, 6, 191–202. [Google Scholar] [CrossRef]
- Xu, T.; Wang, J.; Cheng, Y. Current Patents of Dendrimers and Hyperbranched Polymers in Membranes. Recent Pat. Chem. Eng. 2012, 1, 41–51. [Google Scholar]
- Chen, J.; Hong, S.; Jiang, X.; Li, Z. Methods for Treating Subjects Suffering from Acute Myeloid Leukemia with FLT3 ligand-targeted miR-150 Nanoparticles. U.S. Patent Application 16/310,104, 13 June 2019. [Google Scholar]
- Nieznanski, K.; Nieznanska, H.; Surewicz, W.K.; Surewicz, K.; Bandyszewska, M. Prion Protein-Dendrimer Conjugates for Use in Treatment of Alzheimer Disease. U.S. Patent Application 16/300,214, 28 March 2019. [Google Scholar]
- Jingwei, S.; Zhichun, S.; Yuqin, L.; Min, Z. Nano-Drug Delivery System Loaded with Disulfiram and Photosensitizer Indocyanine Green Based on Low-Generation PAMAM Dendrimer and Application of Nano-Drug Delivery System. China Patent Application 201810774264.0, 16 July 2018. [Google Scholar]
- Wenjin, X.; Jia, Y.; Yan, Z.; Jinling, X.; Qi, Z.; Tianshun, D.; Jinchuan, F. Environmental pH Stimuli-Responsive Type Tumor Targeting and Controlled Drug Release Nano-Carrier and Preparation Method of Nano-Carrier. China Patent Application 201710884400.7, 26 September 2017. [Google Scholar]
- Jingwei, S.; Zhichun, S.; Yuehuang, W. Self-Assembled Nanoparticles Based on Low-Generation PAMAM (Polyamidoamine) Dendrimer Loaded Anti-Cancer Drugs and Application of Self-Assembled Nanoparticles in Anti-Tumor Field. China Patent Application 201710554136.0, 10 July 2017. [Google Scholar]
- Kim, W.J.; Hwang, D.W.; Lee, D.S.; Son, S.J. Polynucleotide Delivering Complex for Target Cells, Containing Rvg Peptide-Conjugated Cationic Polymers. Korea Patent 1020100128622, 15 December 2010. [Google Scholar]
- Jeong, J.H. Gene Delivery System Having Reducible Polymers and Plasmid DNA with Nuclear Protein Binding Motif. Korea Patent 1020100067836, 14 July 2010. [Google Scholar]
- Wu, H.-C.; Yeh, C.-Y. Peptide-Conjugated Nanoparticles for Targeting, Imaging, and Treatment of Prostate Cancer. European Patent EP3402484, 11 January 2017. [Google Scholar]
- Mohammad, D.P.; Paolo, S. Vaccine Compositions and Methods of Use Thereof. U.S. Patent Application 15705520, 15 September 2017. [Google Scholar]
- Kui, L.; Zhongwei, G.; Ning, L. Paclitaxel-loading asymmetric dendrimer nanometer drug carrier system and preparation method thereof. China Patent Application 102016001152662, 14 December 2016. [Google Scholar]
- Govindacharya, A.K. Process for synthesis of oleodendrons and their use as potential chemical penetration enhancers. Indian Patent 1749/MUM/20101020100067836, 8 June 2010. [Google Scholar]
Dendrimer Name | Chemical Structure | Mechanism | Reference |
---|---|---|---|
Poly(propyleneimine) (PPI) dendrimers | Terminal groups with primary amines and the interior of PPI contains tertiary tris propylene amines. | Increased drug solubility through electrostatic interactions. | [36] |
Frechet-type dendrimers | Hyper-branched architecture of polybenzyl ether. Contains -COOH groups as terminal groups. | Helps to enhance solubility in aqueous media and other polar solvents. | [25] |
Peptide dendrimers | Peptidyl branching core and/or covalently attached as surface functional units. | Acts as surfactant and carrier for drug and gene delivery. | [25,37] |
Glycodendrimers | Contains saccharide residues as terminal groups and a core with sugar units. | Site-specific drug delivery to the lectin-rich organs. | [25,38] |
Hybrid dendrimers | A blend of linear and dendritic polymers. | Acts as a surfactant and drug-delivery system. | [25] |
Polyester dendrimers | Polyester-based dendrimers. | Drug targeting, improved biodistribution, and modulation of drug release. | [25,39] |
Poly-L-lysine (PLL) dendrimers | Core and branching units are based on the amino acid lysine. | Gene carriers and increased drug solubility. | [11] |
Carbosilane dendrimers | Si-based dendrimers, allowing functionalization and stability. | Gene therapy enhancer | [40] |
API | Application | Observed Effects | Reference |
---|---|---|---|
Pilocarpine | Ocular drug delivery | Improved residence time of pilocarpine in the eye | [42] |
Enoxaparin | Pulmonary drug delivery | Increased bioavailability of enoxaparin by 40% | [43] |
Ketoprofen | Transdermal drug delivery | Improved drug permeation through the skin | [44] |
Diflunisal | Transdermal drug delivery | Improved drug permeation through the skin | [44] |
Method of Preparation | Advantages | Disadvantages | Examples of Dendrimers |
---|---|---|---|
Divergent growth method | Fast synthesis; production of large quantities; synthesis of highly symmetric dendrimers; the surface of the dendrimer can be easily modified with desired functional groups; allows the formation of high-generation dendrimers. | Possibility of defects in the higher generation dendrimers product; difficult in the separation of the desired product from reactants; excess of reagents; requires numerous steps to form a large structure; requires a large quantity of starting material; possible incomplete reaction of the terminal groups. | PAMAM; PPI; Poly(arylalkyl ether); |
Convergent growth method | Easy to purify the desired product; the occurrence of defect is minimized; possibility of synthesis of asymmetric dendrimers; involves only a small number of reactions per molecule; provides greater structural control than the divergent approach. | Does not allow the formation of a high generation of dendrimers; lower yield; difficult to modify the terminal groups. | JDs; Poly(aryl ether); Poly(aryl alkyne); Poly(phenylene); Poly(alkyl ester); Poly(alkyl ether); |
Double exponential growth technique | Elaboration of large multifunctional dendrons or dendrimers; preparation of symmetric, supramolecular, or asymmetrical dendrimers; high synthetic yields; a large number of dendrimers using the same monomers for 2–3 times. | The process is time-consuming, as the method uses both convergent as well as divergent processes. | Poly(phenylacetylene); Poly(amide); Poly(ether urethane); Poly(ester); JD; |
Double-stage convergent method | Allows the formation of high-generation dendrimers; uses a hypercore that reduces the steric effect; helps to obtain more monodisperse dendrimers; enables the formation of dendrimers with chemically differentiated internal and external branches. | The synthesis of the hypercore, the dendrons, and the final dendrimers is slow. | Phenylacetylene; Poly(amide); |
Hypermonomer method | Dendrimers showing a high number of functional groups in fewer steps; allows the formation of high-generation dendrimers in a few steps. | Synthesis requires several growth and activation steps; the acceleration is limited to generating dendrimers; monomer synthesis is a time-consuming process. | Poly(aryl ether); Triazine; |
Dendrimer | Drug Loaded | Formulation Type | Results | Reference |
---|---|---|---|---|
PEG-PAMAM-G4 | Silybin | Encapsulation | Increased solubility. | [77] |
PAMAM-Biotin | SB-T-1214 | Conjugation | High potency and targeted drug delivery. | [78] |
PAMAM-G4-DHA | Paclitaxel | Conjugation | Increased pharmacological activity in upper gastrointestinal cancer. | [79] |
PAMAM | Berberine | Conjugation and Encapsulation | Improved pharmacokinetic profile. | [80] |
PAMAM | Gallic acid | Conjugation | Improved bioavailability. | [81] |
Silica-PAMAM | Black Carrot Anthocyanin | Encapsulation | Sustained release; less toxicity and enhanced activity. | [82] |
PAMAM-G4 | Resveratrol | Encapsulation | Improved solubility. | [83] |
Biocompatible Dendrimer | Chemical Structure | Results | Reference |
---|---|---|---|
Peptide dendrimer | PLL-Lactose G4 dendrimer | Reduces hemolysis. | [101] |
Polyester dendrimer | Polyester dendrimer with ethylene oxide as the branching unit | Absence of toxicity in cells and decreased drug toxicity. | [102] |
Polyether dendrimer | Carboxylate and malonate as terminal groups | Absence of hemolysis in the erythrocytes one hour after its administration. | [91] |
Polyether imine dendrimer | Carboxylic acid as a terminal group | Absence of toxicity in cells. | [103] |
Phosphate dendrimer | 5G thiophosphate dendrimer | The dendrimer is neither hemotoxic nor cytotoxic. | [104] |
Melamine dendrimer | Melamine as the branching unit | Significant reduction in hepatotoxicity. | [105] |
Triazine dendrimer | Triazine dendrimer with hydrazone linkages | No toxic effect and degradable into small molecules. | [106] |
Technique | Conjugated Molecule | Results | Reference |
---|---|---|---|
PEGylation | Polyethylene glycol (PEG) | Improved drug loading and decreased hemolytic toxicity of the PAMAM dendrimer. | [107] |
Carbohydrate-conjugated dendrimer | Maltose | Decreased hemolytic activity inherent to the PPI dendrimers. | [108] |
Acetylation | Acetyl groups | Decreased PAMAM dendrimers’ toxicity and maximized their transepithelial permeability. | [109] |
Half generation | Carboxylic groups | Decreased cytotoxicity associated with the PAMAM dendrimer. | [110] |
Peptide-conjugated dendrimer | Arginine-glycine-aspartate peptide | The conjugation of tripeptides minimized the cytotoxicity of the cationic PAMAM dendrimer. | [111] |
Drug-conjugated dendrimer | Flurbiprofen | The drug-dendrimer complex showed lesser hemolytic toxicity than the PAMAM dendrimer. | [112] |
Antibody-conjugated dendrimer | Human epidermal growth factor receptor-2 monoclonal antibody (Anti-HER2 mAb) | Rapid and efficient cellular internalization of the dendrimer-antibody conjugated with low systemic toxicity. | [113] |
Tuftsin-conjugated dendrimer | Threonyl-lysyl-prolyl-arginine peptide (Tuftsin) | Tuftsin–PPI complex possessed lower cytotoxicity than the PPI dendrimer. | [114] |
Folic acid-conjugated dendrimer | Folic acid and Polyethylene glycol (PEG) | Folic acid–PEG-PAMAM has lower hemolytic toxicity compared to the PEG-PAMAM and the PAMAM dendrimer. | [115] |
Pharmaceutical Application | Dendrimer | Drug loaded | Summary | Publication Date | Patent | Reference |
---|---|---|---|---|---|---|
Gene delivery | PAMAM | MicroRNA-150 (miR-150) | A PAMAM dendrimer was designed for sustained delivery of miR-150 to FLT3-overexpressing acute myeloid leukemia cells. Preclinical animal model studies have demonstrated good therapeutic efficacy. | 2019 | US20190175754 | [130] |
CNS drug delivery | PAMAM | Prion protein (PrP) | PrP was conjugated to PAMAM dendrimers for Alzheimer’s therapy. This complex will inhibit β-amyloid plaque formation (they act as potent neurotoxins in vitro and in vivo in Alzheimer’s disease). | 2019 | US20190092837 | [131] |
Tumor drug delivery | PAMAM | Disulfiram | Disulfiram and photosensitizer indocyanine green were entrapped into PAMAM-G0 dendrimer for anti-tumor therapy. This prepared a nanodrug-delivery system that can simultaneously play roles of chemotherapy and photodynamic therapy. | 2018 | CN108888764 | [132] |
Tumor targeting and controlled drug release | PAMAM | Doxorubicin(DOX) | Tumor targeting and controlled drug release of the DOX-PEG-PAMAM dendritic complex is controlled by the pH. | 2017 | CN107596385 | [133] |
Tumor targeting | PAMAM | Erlotinib | The Erlotinib–PAMAM dendrimer will target tumor cells with a high expression of CD44 and can specifically deliver more drugs to the tumor site. | 2017 | CN107281164 | [134] |
Targeted drug delivery | PLL | Polynucleotides | The rabies virus glycoprotein (RVG) was conjugated to the PLL dendrimer to provide effective and safe delivery of polynucleotides to target cells. | 2012 | KR1020120067168 | [135] |
Gene delivery | PLL | Plasmid DNA | A PLL system containing a vector with intracellular nuclear protein binding and reducible polymers is provided to stabilize plasmid DNA in an extracellular region, and to promote its absorption to the target cell. | 2012 | KR1020120007208 | [136] |
Cancer targeting | Peptide-dendrimer | Docetaxel | The peptide was conjugated with the dendrimer for targeting, imaging, and treatment of prostate cancer. | 2018 | EP3402484 | [137] |
Vaccine | Positively charged dendrimer | Antigen | Branched polymeric dendrimers (e.g., PAMAM and other dendrimers) were used as vehicles for the targeted delivery of antigen to specific cells, giving rise to a new nanoparticle-based method for genetic or protein vaccination. | 2018 | US20180099032 | [138] |
Drug-delivery system | Asymmetric dendrimer | Paclitaxel | Paclitaxel-loading asymmetric dendrimer nanometer drug carrier system has the anti-tumor treatment index and biosecurity enhanced compared with those of free Paclitaxel during the in vivo treatment. | 2017 | CN106512021 | [139] |
Transdermal drug delivery and permeation enhancer | Second-generation oleodendrons | Diclofenac | Oleic acid-based dendron is used as a potential chemical penetration enhancer in transdermal drugs. | 2013 | IN1749/MUM/2010 | [140] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.; Veiga, F.; Figueiras, A. Dendrimers as Pharmaceutical Excipients: Synthesis, Properties, Toxicity and Biomedical Applications. Materials 2020, 13, 65. https://doi.org/10.3390/ma13010065
Santos A, Veiga F, Figueiras A. Dendrimers as Pharmaceutical Excipients: Synthesis, Properties, Toxicity and Biomedical Applications. Materials. 2020; 13(1):65. https://doi.org/10.3390/ma13010065
Chicago/Turabian StyleSantos, Ana, Francisco Veiga, and Ana Figueiras. 2020. "Dendrimers as Pharmaceutical Excipients: Synthesis, Properties, Toxicity and Biomedical Applications" Materials 13, no. 1: 65. https://doi.org/10.3390/ma13010065
APA StyleSantos, A., Veiga, F., & Figueiras, A. (2020). Dendrimers as Pharmaceutical Excipients: Synthesis, Properties, Toxicity and Biomedical Applications. Materials, 13(1), 65. https://doi.org/10.3390/ma13010065