Cytotoxicity, Antioxidant, Antibacterial, and Photocatalytic Activities of ZnO–CdS Powders
Abstract
:1. Introduction
2. Materials and Experimental Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Q.; Ma, L.; Zhao, Q.; Li, Z.; Xu, X. Mophology-Modulations of TiO2 Nanostructures for Enhanced Photocatalytic Performance. Appl. Surf. Sci. 2015, 332, 224–228. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO2 Photocatalysis: Design and Applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Chaengchawi, P.; Serivalsatit, K.; Sujaridworakun, P. Synthesis of visible-light responsive CdS/ZnO nanocomposite photocatalysts via simple precipitation method. Key Eng. Mater. 2014, 608, 224–229. [Google Scholar] [CrossRef]
- Li, W.; Cui, X.; Wang, P.; Shao, Y.; Li, D.; Teng, F. Enhanced photosensitized degradation of rhodamine B on CdS/TiO2 nanocomposites under visible light irradiation. Mater. Res. Bull. 2013, 48, 3025–3031. [Google Scholar] [CrossRef]
- Preda, N.; Enculescu, M.; Gherendi, F.; Matei, E.; Toimil-Molares, M.E.; Enculescu, I. Synthesis of CdS nanostructures using template-assisted ammonia-free chemical bath deposition. J. Phys. Chem. Solids 2012, 73, 1082–1089. [Google Scholar] [CrossRef]
- Hsu, M.H.; Chang, C.J.; Weng, H.T. Efficient H2 Production Using Ag2S-Coupled ZnO@ZnS Core-Shell Nanorods Decorated Metal Wire Mesh as an Immobilized Hierarchical Photocatalyst. ACS Sustain. Chem. Eng. 2016, 4, 1381–1391. [Google Scholar] [CrossRef]
- Leschkies, K.S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J.E.; Carter, C.B.; Kortshagen, U.R.; Norris, D.J.; Aydil, E.S. Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices. Nano Lett. 2007, 7, 1793–1798. [Google Scholar] [CrossRef]
- Diguna, L.J.; Shen, Q.; Kobayashi, J.; Toyoda, T. High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 2007, 91, 023116. [Google Scholar] [CrossRef]
- Pujalté, I.; Passagne, I.; Daculsi, R.; De Portal, C.; Ohayon-Courtès, C.; L’Azou, B. Cytotoxic effects and cellular oxidative mechanisms of metallic nanoparticles on renal tubular cells: Impact of particle solubility. Toxicol. Res. 2015, 4, 409–422. [Google Scholar] [CrossRef]
- Preda, N.; Enculescu, M.; Enculescu, I. Polysaccharide-assisted crystallization of ZnO micro/nanostructures. Mater. Lett. 2014, 115, 256–260. [Google Scholar] [CrossRef]
- Suwanboon, S.; Amornpitoksuk, P.; Bangrak, P.; Randorn, C. Physical and chemical properties of multifunctional ZnO nanostructures prepared by precipitation and hydrothermal methods. Ceram. Int. 2014, 40, 975–983. [Google Scholar] [CrossRef]
- Preda, N.; Enculescu, M.; Enculescu, I. Polymer Sphere Array Assisted ZnO Electroless Deposition. Soft Mater. 2013, 11, 457–464. [Google Scholar] [CrossRef]
- Podrezova, L.V.; Porro, S.; Cauda, V.; Fontana, M.; Cicero, G. Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis. Appl. Phys. A 2013, 113, 623–632. [Google Scholar] [CrossRef]
- Zare, M.; Namratha, K.; Thakur, M.S.; Yallappa, S.; Byrappa, K. Comprehensive biological assessment and photocatalytic activity of surfactant assisted solvothermal synthesis of ZnO nanogranules. Mater. Chem. Phys. 2018, 215, 148–156. [Google Scholar] [CrossRef]
- Matei, E.; Enculescu, M.; Preda, N.; Enculescu, I. ZnO Morphological, structural and optical properties control by electrodeposition potential sweep rate. Mater. Chem. Phys. 2012, 134, 988–993. [Google Scholar] [CrossRef]
- Florica, C.; Preda, N.; Costas, A.; Zgura, I.; Enculescu, I. ZnO nanowires grown directly on zinc foils by thermal oxidation in air: Wetting and water adhesion properties. Mater. Lett. 2016, 170, 156–159. [Google Scholar] [CrossRef]
- Florica, C.; Costas, A.; Kuncser, A.; Preda, N.; Enculescu, I. High performance FETs based on ZnO nanowires synthesized by low cost methods. Nanotechnology 2016, 27, 475303. [Google Scholar] [CrossRef]
- Frunza, L.; Diamandescu, L.; Zgura, I.; Frunza, S.; Ganea, C.P.; Negrila, C.C.; Enculescu, M.; Birzu, M. Photocatalytic activity of wool fabrics deposited at low temperature with ZnO or TiO2 nanoparticles: Methylene blue degradation as a test reaction. Catal. Today 2018, 306, 251–259. [Google Scholar] [CrossRef]
- Khanchandani, S.; Kundu, S.; Patra, A.; Ganguli, A.K. Shell Thickness Dependent Photocatalytic Properties of ZnO/CdS Core-Shell Nanorods. J. Phys. Chem. C 2012, 116, 23653–23662. [Google Scholar] [CrossRef]
- Wang, H.; Lin, W.; Qiu, X.; Fu, F.; Zhong, R.; Liu, W.; Yang, D. In Situ Synthesis of Flowerlike Lignin/ZnO Composite with Excellent, UV-Absorption Properties and Its Application in Polyurethane. ACS Sustain. Chem. Eng. 2018, 6, 3696–3705. [Google Scholar] [CrossRef]
- Sathya, S.; Murthy, P.S.; Devi, V.G.; Das, A.; Anandkumar, B.; Sathyaseelan, V.S.; Doble, M.; Venugopalan, V.P. Antibacterial and cytotoxic assessment of poly (methyl methacrylate) based hybrid nanocomposites. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 100, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Shubha, P.; Gowda, M.L.; Namratha, K.; Shyamsunder, S.; Manjunatha, H.B.; Byrappa, K. Ex-situ fabrication of ZnO nanoparticles coated silk fiber for surgical applications. Mater. Chem. Phys. 2019, 231, 21–26. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, X.; Pentok, M.; Sauli, E.; He, N.; Zen, X.; Li, X.; Liu, T. Molecular Mechanism and Changes of Antioxidant Enzyme in ZnO Nanoparticles Against Fungus. J. Biomed. Nanotechnol. 2019, 15, 647–661. [Google Scholar] [CrossRef]
- Fernández Tornero, A.C.; García Blasco, M.; Chiquirrín Azqueta, M.; Fernández Acevedo, C.; Salazar Castro, C.; Ramos López, S.J. Antimicrobial ecological waterborne paint based on novel hybrid nanoparticles of zinc oxide partially coated with silver. Prog. Org. Coat. 2018, 121, 130–141. [Google Scholar] [CrossRef]
- Veluswamy, P.; Suhasini, S.; Khan, F.; Ghosh, A.; Abhijit, M.; Hayakawa, Y.; Ikeda, H. Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications. J. Vinyl Addit. Technol. 2017, 157, 1801–1808. [Google Scholar] [CrossRef]
- Tokarsky, J.; Martinec, P.; Mamulova Kutlakova, K.; Ovcacikova, H.; Studentova, S.; Scicka, J. Photoactive and hydrophobic nano-ZnO/poly (alkyl siloxane) coating for the protection of sandstone. Constr. Build. Mater. 2019, 199, 549–559. [Google Scholar] [CrossRef]
- Nayak, J.; Lohani, H.; Bera, T.K. Observation of catalytic properties of CdS–ZnO composite nanorods synthesized by aqueous chemical growth technique. Curr. Appl. Phys. 2011, 11, 93–97. [Google Scholar] [CrossRef]
- Zhou, H.; Qu, Y.; Zeida, T.; Duan, X. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ. Sci. 2012, 5, 6732–6743. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, H.; Wang, Y.; Tan, L.; Chen, L.; Chen, Y. 3-Dimensional ZnO/CdS nanocomposite with high mobility as an efficient electron transport layer for inverted polymer solar cells. Phys. Chem. Chem. Phys. 2016, 18, 12175–12182. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.C.; Chung, C.C.; Lo, Y.J.; Wang, C.C. Microstructure-Dependent Visible-Light Driven Photoactivity of Sputtering-Assisted Synthesis of Sulfide-Based Visible-Light Sensitizer onto ZnO Nanorods. Materials 2016, 9, 1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Tovar, R.; Fernández-Domene, R.M.; Montañés, M.T.; Sanz-Marco, A.; Garcia-Antón, J. ZnO/ZnS Heterostructures for hydrogen production by photoelectrochemical water splitting. RSC Adv. 2016, 6, 30425–30435. [Google Scholar] [CrossRef]
- Gondal, M.A.; Ilyas, A.M.; Baig, U. Pulsed laser ablation in liquid synthesis of ZnO/TiO2 nanocomposite catalyst with enhanced photovoltaic and photocatalytic performance. Ceram. Int. 2016, 42, 13151–13160. [Google Scholar] [CrossRef]
- Costas, A.; Florica, C.; Preda, N.; Apostol, N.; Kuncser, A.; Nitescu, A.; Enculescu, I. Radial heterojunction based on single ZnO–CuxO core-shell nanowire for photodetector applications. Sci. Rep. 2019, 9, 5553. [Google Scholar] [CrossRef] [Green Version]
- Florica, C.; Costas, A.; Preda, N.; Beregoi, M.; Kuncser, A.; Apostol, N.; Popa, C.; Socol, G.; Diculescu, V.; Enculescu, I. Core-shell nanowire arrays based on ZnO and CuxO for water stable photocatalysts. Sci. Rep. 2019, 9, 17268. [Google Scholar] [CrossRef] [Green Version]
- Rajaboopathi, S.; Thambidurai, S. Synthesis of bio-surfactant based Ag/ZnO nanoparticles for better thermal, photocatalytic and antibacterial activity. Mater. Chem. Phys. 2019, 223, 512–522. [Google Scholar] [CrossRef]
- Kim, W.; Baek, M.; Yong, K. Fabrication of ZnO/CdS, ZnO/CdO core/shell nanorod arrays and investigation of their ethanol gas sensing properties. Sens. Actuators B Chem. 2016, 223, 599–605. [Google Scholar] [CrossRef]
- Zhao, H.; Dong, Y.; Jiang, P.; Wang, G.; Miao, H.; Wu, R.; Kong, L.; Zhang, J.; Zhang, C. Light-assisted preparation of a ZnO/CdS nanocomposite for enhanced photocatalytic H2 evolution: An insight into importance of in situ generated ZnS. ACS Sustain. Chem. Eng. 2015, 3, 969–977. [Google Scholar] [CrossRef]
- Cao, S.; Yan, X.; Kang, Z.; Liang, Q.; Liao, X.; Zhang, Y. Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for PEC water splitting. Nano Energy 2016, 24, 25–31. [Google Scholar] [CrossRef]
- Zirak, M.; Akhavan, O.; Moradlou, O.; Nien, Y.T.; Moshfegh, A.Z. Vertically aligned, ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria. J. Alloys Compd. 2014, 590, 507–513. [Google Scholar] [CrossRef]
- Jana, T.K.; Pal, A.; Chatterjee, K. Self assembled flower like CdS–ZnO nanocomposite and its photocatalytic activity. J. Alloys Compd. 2014, 583, 510–515. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Ponnanikajamideen, M.; Malarkodi, C.; Malini, M.; Annadurai, G. Microbe-mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria. J. Nanostruct. Chem. 2014, 4, 96. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Barrelet, C.J.; Lieber, C.M. Lasing in Single Cadmium Sulfide Nanowire Optical Cavities. Nano Lett. 2005, 5, 917–920. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Esparza, J.; Martínez-Mena, A.; Gutiérrez-Sancha, I.; Rodríguez-Fragoso, P.; Gonzalez de la Cruz, G.; Mondragón, R.; Rodríguez-Fragoso, L. Synthesis, characterization and biocompatibility of cadmium sulfide nanoparticles capped with dextrin for in vivo and in vitro imaging application. J. Nanobiotechnol. 2015, 13, 83. [Google Scholar] [CrossRef] [Green Version]
- Midya, L.; Patra S., A.; Banerjee, C.; Panda, A.B.; Pal, S. Novel nanocomposite derived from ZnO/CdS QDs embedded crosslinked chitosan: An efficient photocatalyst and effective antibacterial agent. J. Hazard. Mater. 2019, 369, 398–407. [Google Scholar] [CrossRef]
- Ali, T.; Tripathi, P.; Ahammed, N.; Ashraf, S.S.Z. The Study and Characteristics of ZnO/CdS Nanocompositeand Its Application on Nanoantibacterial Activities. AIP Conf. Proc. 2015, 1665, 050118. [Google Scholar]
- Gupta, R.; Eswar, N.K.R.; Modak, J.M.; Madras, G. Effect of morphology of zinc oxide in ZnO–CdS–Ag ternary nanocomposite towards photocatalytic inactivation of E. coli under UV and visible light. Chem. Eng. J. 2017, 307, 966–980. [Google Scholar] [CrossRef]
- Vignesh, S.; Suganthi, S.; Sundar, J.K.; Raj, V.; Devi, P.R.I. Highly efficient visible light photocatalytic and antibacterial performance of PVP capped Cd:Ag: ZnO photocatalyst nanocomposite. Appl. Surf. Sci. 2019, 479, 914–929. [Google Scholar] [CrossRef]
- Wang, H.; Cao, Y.; Wang, C.; Cui, S.; Mi, L.; Miyazawa, T. Green self-assembly of zein-conjugated ZnO/Cd (OH) Cl hierarchical nanocomposites with high cytotoxicity and immune organs targeting. Sci. Rep. 2016, 6, 24387. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Paino, M.; Muñoz-Bonilla, A.; Fernández-García, M. Antimicrobial Polymers in the Nano-World. Nanomaterials 2017, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Balaure, P.C.; Holban, A.M.; Grumezescu, A.M.; Mogoşanu, G.D.; Bălşeanu, T.A.; Stan, M.S.; Dinischiotu, A.; Volceanov, A.; Mogoantă, L. In vitro and in vivo studies of novel fabricated bioactive dressings based on collagen and zinc oxide 3D scaffolds. Int. J. Pharm. 2019, 557, 199–207. [Google Scholar] [CrossRef]
- Zgura, I.; Preda, N.; Ghica, D.; Socol, G.; Ghica, C.; Enculescu, M.; Negut, I.; Nedelcu, L.; Frunza, L.; Ganea, C.P.; et al. Wet chemical synthesis of ZnO–CdS composites and their photocatalytic activity. Mater. Res. Bull. 2018, 99, 174–181. [Google Scholar] [CrossRef]
- Stan, M.S.; Nica, I.C.; Dinischiotu, A.; Varzaru, E.; Iordache, O.G.; Dumitrescu, I.; Popa, M.; Chifiriuc, M.C.; Pircalabioru, G.G.; Lazar, V.; et al. Photocatalytic, Antimicrobial and Biocompatibility Features of Cotton Knit Coated with Fe–N–Doped Titanium Dioxide Nanoparticles. Materials 2016, 9, 789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Yuan, Y.; Han, H.; Wu, D.; Gao, Z.; Jiang, K. Synthesis of ZnO/CdS Hierarchical heterostructure with enhanced photocatalytic efficiency under nature sunlight. CrystEngComm 2012, 14, 3615–3622. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.E.; Iordache, S.M.; Iordache, A.M.; Badea, N.; Ungureanu, C. Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes. Beilstein J. Nanotechnol. 2014, 5, 2316–2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valgas, C.; De Souza, S.M.; Smania, E.F.A.; Smania, A., Jr. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Barbinta-Patrascu, M.E.; Badea, N.; Pirvu, C.; Bacalum, M.; Ungureanu, C.; Nadejde, P.L.; Ion, C.; Rau, I. Multifunctional soft hybrid bio-platforms based on nano-silver and natural compounds. Mater. Sci. Eng. C 2016, 69, 922–932. [Google Scholar] [CrossRef]
- Especel, C.; Duprez, D.; Epron, F. Bimetallic catalysts for hydrogenation in liquid phase. C.R. Chimie 2014, 17, 790. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Mondal, I.; Pal, U.; Devi, P.S. Fabrication of hierarchical ZnO/CdS heterostructured nanocomposites for enhanced hydrogen evolution from solar water splitting. Phys. Chem. Chem. Phys. 2015, 17, 20407–20415. [Google Scholar] [CrossRef]
- Liu, W.F.; Jia, C.; Jin, C.G.; Yao, L.Z.; Cai, W.L.; Li, X.G. Growth mechanism and photoluminescence of CdS nanobelts on Si substrate. J. Cryst. Growth 2004, 269, 304–309. [Google Scholar] [CrossRef]
- Zhou, H.; Alves, H.; Hofmann, D.M.; Kriegseis, W.; Meyer, B.K.; Kaczmarczyk, G.; Hoffmann, A. Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure. Appl. Phys. Lett. 2002, 80, 210–212. [Google Scholar] [CrossRef]
- Tam, K.H.; Cheung, C.K.; Leung, Y.H.; Djurišić, A.B.; Ling, C.C.; Beling, C.D.; Fung, S.; Kwok, W.M.; Chan, W.K.; Phillips, D.L.; et al. Defects in ZnO Nanorods Prepared by a Hydrothermal Method. J. Phys. Chem. B 2006, 110, 20865–20871. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Leung, Y.H.; Djurišić, A.B.; Liu, Z.T.; Xie, M.H.; Shi, S.L.; Xu, S.J.; Chan, W.K. Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl. Phys. Lett. 2004, 85, 1601–1603. [Google Scholar] [CrossRef] [Green Version]
- Djurišić, A.B.; Leung, Y.H. Optical Properties of ZnO Nanostructures. Small 2006, 2, 944–961. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, M.; Tan, P.Y.; Oruc, M.E.; Tan, O.K.; Tse, M.S.; Shannon, M. Effect of ball milling on the characteristics of nano structure SrFeO3 powder for photocatalytic degradation of methylene blue under visible light irradiation and its reaction kinetics. Catal. Today 2011, 161, 70–77. [Google Scholar] [CrossRef]
- Chanu, L.A.; Singh, W.J.; Sing, K.J.; Devi, K.N. Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using manganese doped ZnO nanoparticles. Results Phys. 2019, 12, 1230–1237. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Yan, L.; Wang, Z.; Liu, H. Synthesis, characterisation and adsorption/photocatalytic performance of ZnO/CdS flowers. Micro Nano Lett. 2013, 8, 827–831. [Google Scholar] [CrossRef]
- Singh, B.N.; Rawat, A.K.S.; Khan, W.; Naqvi, A.H.; Singh, B.R. Biosynthesis of Stable Antioxidant ZnO Nanoparticles by Pseudomonas aeruginosa Rhamnolipids. PLOS One 2014, 9, e106937. [Google Scholar] [CrossRef] [Green Version]
- Viazis, S.; Diez-Gonzalez, F. Chapter one—Enterohemorrhagic Escherichia coli: The Twentieth Century’s Emerging Foodborne Pathogen: A Review. Adv. Agron. 2011, 111, 1. [Google Scholar]
- Ali, A.; Phull, A.R.; Zia, M. Elemental zinc to zinc nanoparticles: Is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. Nanotechnol. Rev. 2018, 7, 413–441. [Google Scholar] [CrossRef]
- Malik, A.; Nath, M.; Mohiyuddin, S.; Packirisamy, G. Multifunctional CdSNPs@ZIF-8: Potential Antibacterial Agent against GFP-Expressing Escherichia coli and Staphylococcus aureus and Efficient Photocatalyst for Degradation of Methylene Blue. ACS Omega 2018, 3, 8288–8308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavin, Y.N.; Asnis, j.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”. Front. Microbiol. 2018, 9, 1441. [Google Scholar] [CrossRef] [Green Version]
Chemical States | % |
---|---|
Zn2p3/2 | 41.3 |
O1s | 45.6 |
C1s | 6.0 |
Cd3d | 3.2 |
S2p | 3.9 |
Sample | k1 (min−1) | k2 (min−1) |
---|---|---|
ZnO | 0.00568 ± 0.00022 | 0.00172 ± 0.00002 |
ZnO–CdS5 | 0.00503 ± 0.00045 | 0.00151 ± 0.00002 |
ZnO–CdS10 | 0.00746 ± 0.00046 | 0.00163 ± 0.00003 |
ZnO–CdS15 | 0.00673 ± 0.00039 | 0.00176 ± 0.00003 |
ZnO–CdS20 | 0.00397 ± 0.00029 | 0.00116 ± 0.00002 |
ZnO–CdS25 | 0.00617 ± 0.00033 | 0.00150 ± 0.00002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zgura, I.; Preda, N.; Enculescu, M.; Diamandescu, L.; Negrila, C.; Bacalum, M.; Ungureanu, C.; Barbinta-Patrascu, M.E. Cytotoxicity, Antioxidant, Antibacterial, and Photocatalytic Activities of ZnO–CdS Powders. Materials 2020, 13, 182. https://doi.org/10.3390/ma13010182
Zgura I, Preda N, Enculescu M, Diamandescu L, Negrila C, Bacalum M, Ungureanu C, Barbinta-Patrascu ME. Cytotoxicity, Antioxidant, Antibacterial, and Photocatalytic Activities of ZnO–CdS Powders. Materials. 2020; 13(1):182. https://doi.org/10.3390/ma13010182
Chicago/Turabian StyleZgura, Irina, Nicoleta Preda, Monica Enculescu, Lucian Diamandescu, Catalin Negrila, Mihaela Bacalum, Camelia Ungureanu, and Marcela Elisabeta Barbinta-Patrascu. 2020. "Cytotoxicity, Antioxidant, Antibacterial, and Photocatalytic Activities of ZnO–CdS Powders" Materials 13, no. 1: 182. https://doi.org/10.3390/ma13010182
APA StyleZgura, I., Preda, N., Enculescu, M., Diamandescu, L., Negrila, C., Bacalum, M., Ungureanu, C., & Barbinta-Patrascu, M. E. (2020). Cytotoxicity, Antioxidant, Antibacterial, and Photocatalytic Activities of ZnO–CdS Powders. Materials, 13(1), 182. https://doi.org/10.3390/ma13010182