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Abstract: In this work, ZnO–CdS composite powders synthesized by a simple chemical
precipitation method were thoroughly characterized. The morphological, structural, compositional,
photocatalytical, and biological properties of the prepared composites were investigated in comparison
with those of the pristine components and correlated with the CdS concentration. ZnO–CdS composites
contain flower-like structures, their size being tuned by the CdS amount added during the chemical
synthesis. The photocatalytic activity of the composites was analyzed under UV irradiation using
powders impregnated with methylene blue; the tests confirming that the presence of CdS along the
ZnO in composites can improve the dye discoloration. The biological properties such as antioxidant
capacity, antibacterial activity, and cytotoxicity of the ZnO, CdS, and ZnO–CdS composites were
evaluated. Thus, the obtained composites presented medium antioxidant effect, biocidal activity
against Escherichia coli, and no toxicity (at concentrations less than 0.05 mg/mL for composites with a
low CdS amount) for human fibroblast cells. Based on these results, such composites can be used as
photocatalytic and/or biocidal additives for photoactive coatings, paints, or epoxy floors, which in
their turn can provide a cleaner and healthier environment.

Keywords: ZnO–CdS composites; methylene blue discoloration; antioxidant capacity; antibacterial
activity; cytotoxicity

1. Introduction

In the last years, inorganic nanostructures such as TiO2 [1,2], ZnO [3,4], CdS [5–7], Ag2S [8],
or CdSe [9,10] have been extensively studied for their applications in the people’s daily life. Their
features like size, shape, specific surface area, defects in the crystal structure, reactivity, monodispersity,
etc. are responsible for the particular properties relevant in the biological area. For example, due to the
size smaller than cells, the nanostructures can penetrate the biological structures disrupting their normal
function [11]. Therefore, to benefit from technologies based on these low-dimensional structures, it is
required to characterize them for evaluating, understanding and tuning their biological effects such as
cytotoxicity, antioxidant capacity, and antibacterial activity in order to minimize or prevent adverse
health impacts.
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Probably the most extensively studied metal oxide, ZnO can be relatively easy prepared by
various methods: Chemical precipitation [12,13], electroless deposition [14], hydrothermal [13,15,16],
electrochemical deposition [17], thermal oxidation [18,19], aqueous solution growth [19], chemical
vapor deposition [15], magnetron sputtering [20], and so on. This metal oxide exhibits unique
properties like direct and wide band gap (~3.3 eV), high exciton binding energy (60 meV) at ambient
temperature, high electrochemical stability, anisotropic growth, etc. [21]. Furthermore, being one
of the best bio-friendly absorbers of UV radiation [22], ZnO can act as an antibacterial [23,24] or
antifungal [25] agent when its nanostructures are incorporated in surface coatings (paints) [23,26] or
textiles materials [27]. For instance, photocatalysis tests carried out recently on poly(alkyl siloxane)
incorporating ZnO nanoparticles reveal that this material can be used as a protective coating of
sandstone [28]. Although, for enhancing the ZnO photocatalytic efficiency in the visible range of solar
energy, this semiconductor is required to be combined with a photosensitizer [29], in order to obtain a
fast separation of the charge carriers and to decrease their recombination rate [30]. Hence, composite
materials such as ZnO–CdS [31,32], ZnO–ZnS [33], ZnO–TiO2 [34], ZnO–CuO [35,36], and ZnO–Ag [37]
have attracted considerable attention. CdS is considered one of the most suitable visible sensitizers,
being characterized by an energy band gap value of ~2.4 eV (in bulk) and a high optical absorption
coefficient. Moreover, the composites based on ZnO and CdS find applications in gas sensing [38],
photocatalysis [32,39], water splitting [40], or antibacterial fields [41].

Taking into account that both semiconductors can behave as photocatalysts in the photodegradation
of the environmental organic pollutants [42] and as antibacterial agents [41], their combination in
composites can lead to materials with enhanced photocatalytic and antibacterial properties depending
on their design and on the ratio between the two components. It has to be noticed that, recently,
nanomaterials containing cadmium reveal a bactericidal effect owing to Cd2+ release [11,43] being used
in the biological area [44,45]. However, till now, only few studies were focused on the photocatalytic
and biological properties of composites based on ZnO–CdS [46,47], ZnO–CdS–Ag [48], Cd:Ag:ZnO [49],
and ZnO/Cd (OH)Cl [50]. The results of these works show the huge potential of such composites
in different application areas, ranging from wastewater treatment to antimicrobials. Nevertheless,
the toxicity of the materials containing cadmium is still on debate. Usually, antimicrobial agents
are used in the health domain for killing microorganisms or inhibiting their growth, the strength of
these compounds being directly proportional to their toxicity to human cells [51]. Concerning the
ZnO toxicity, there are several studies on its effect on human fibroblast cells [52]. Such researches are
important because the human skin is the first organ which comes into contact with the semiconductor
nanostructures. However, to our knowledge, up to now there is no report on the effect of ZnO–CdS
composites on human fibroblast cells and on the antioxidant activity of these composites.

In this context, the present work is focused on the photocatalytic activity and biological properties
such as antioxidant capacity, antibacterial activity, and cytotoxicity of the ZnO, CdS, and ZnO–CdS
composite powders synthesized by a simple chemical precipitation method. The properties of the
prepared composites were investigated in comparison with the pristine components and correlated
with the CdS concentration. The photocatalysis tests made under UV irradiation directly on powders
impregnated with methylene blue confirm that the presence of CdS beside ZnO improves the dye
photocatalytic discoloration. Further, the ZnO–CdS composites present a medium antioxidant effect,
antibacterial activity against Escherichia coli, and, in the case of the composite with the lower CdS
amount (at a certain concentration), no toxicity for human fibroblast cells. Ergo, the information
provided by this work offers an interesting insight on the potential applications of ZnO–CdS composites
as photocatalytic and/or biocidal additives for photoactive coatings, paints, epoxy floors, etc.

2. Materials and Experimental Methods

The chemical reagents Cd(NO3)2·4H2O, Na2S, Zn(NO3)2·6H2O, and NaOH were purchased from
Merck (Darmstadt, Germany) and used without further purification.
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ZnO, CdS, and ZnO–CdS powders were synthesized in water, at room temperature, according
to the procedure described in [53]. Thus, CdS powder was prepared by mixing 1 M Na2S and 1 M
Cd(NO3)2·4H2O, the precipitate being collected by centrifugation, washed with distilled water and
dried under vacuum at 100 ◦C for 2 h. Then, 0.5 M Zn(NO3)2 and 1 M NaOH were added in an
appropriate water volume containing different CdS amounts. The obtained powder was collected by
centrifugation, washed with distilled water, and dried under vacuum at 100 ◦C for 2 h. Additionally,
for comparison, ZnO powder was obtained using the same experimental parameters. Depending on
the CdS concentration (5, 10, 15, 20, and 25 mM), the ZnO–CdS composite powders were labeled as
follows: ZnO–CdS5, ZnO–CdS10, ZnO–CdS15, ZnO–CdS20, and ZnO–CdS25.

The morphological, optical, structural, compositional, photocatalytical, and biological properties
of the prepared powders were evaluated.

Scanning electron microscopy (SEM) images were obtained using a Zeiss EVO 50XVP microscope
(Oberkochen, Germany). The reflectance spectra were recorded with a PerkinElmer Lambda 45
spectrometer using integrating sphere. The reflectance and photoluminescence (PL) spectra were
recorded with a PerkinElmer Lambda 45 spectrometer (Waltham, MA, USA) using an integrating
sphere and an Edinburgh FL 920 photoluminescence spectrometer (Livingston, UK) with double
monochromators and a 450 W Xe lamp as excitation source, respectively. X-ray diffraction (XRD)
analysis was carried out using a Bruker D8 Advance diffractometer (Billerica, MA, USA) with CuKα

radiation. The source was operated at 40 kV and 40 mA and the Kβ radiation was eliminated using a
nickel filter (λ = 0.154 nm). Diffraction patterns were acquired at room temperature in Bragg-Brentano
geometry in the range of 2θ, from 20◦ to 80◦, at a speed of 0.6◦/min (2θ/min). The XRD data were
processed using “Bruker Diffrac plus Basic Package Evaluation v.12”. In order to evidence the chemical
states of the components, X-ray photoelectron spectroscopy (XPS) measurements were performed
using a SPECS photoelectron spectrometer with a PHOIBOS 150 analyzer (Berlin, Germany). The X-ray
source, XR-50, operates on an Al anode (hν = 1486.7 eV) at 300 W, 24 mA, and 12.5 kV. The acquisition
was made with pass energy of 10 eV for individual spectra and 50 eV for extended spectrum.

The photocatalytic properties were studied using a Photocatalysis Evaluation Checker model
PCC-2 (ULVAC RIKO Inc., Yokohama, Kanagawa, Japan) and methylene blue as dye (MB, Merck).
In a very fast and simple way, the PCC-2 system can compare in the same time the photocatalytic
activities of two samples. Thus, for investigating the M over time under continuous irradiation with
UV light, the device generates pulsed light at 660 nm (at this wavelength being the main absorption
peak of MB) and records only the reflected impulses from the sample surface synchronized with the
light emitter period. The photocatalytic measurements were performed at room temperature, under
UV light (~1 mW; λ = 368 nm), at~2.5 W/m2 irradiation, over a period of 120 min. Firstly, droplets
of the powder suspension in ethanol were dripped onto glass substrates. In order to remove any
contaminants, the samples were cleaned for 2 h under a UV lamp of 30 W (λ = 365 nm). Further,
they were immersed in 1 mM MB aqueous solution for 2 h and dried in dark for several days at the
room temperature. In this way, the water molecules were eliminated, only the MB molecules remaining
on the powder surface. During the measurements, the MB decomposition leads to a gradual reduction
of its optical absorption. The system provides the absorbance value, a higher negative value indicating
a better photocatalytic activity of the sample [54]. The percentage of dye discoloration was estimated
using the equation Discoloration efficiency = (C0 − C)/C0 × 100%, where, C0 is the initial value of the dye
concentration, C is the value of the dye concentration at t time.

The active species (hydroxyl radicals) involved in the MB discoloration were detected by
photoluminescence using terephthalic acid (TA, Merck) as a probe molecule. Thus, an amount
of 5 mg of powder sample was dispersed in 20 mL of 0.5 mM TA in 2 mM NaOH aqueous solution.
Then, at intervals of 15 min, a volume of 3 mL of the obtained suspension was exposed to unfiltered
light provided by a 50 W low pressure mercury vapor lamp. The sample was placed at 10 cm distance
from the light source. Under light irradiation, the photocatalyst powders generate hydroxyl radicals
(OH•), which further react with TA producing 2-hydroxyterephthalic acid (TAOH), a highly fluorescent
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product [55]. The emission spectra were collected at room temperature by a LS55 Perkin Elmer
fluorescence spectrometer using λexc = 315 nm, in 350–600 nm wavelength range.

The antioxidant capacity was assessed by chemiluminescence (CL) technique, on a
Chemiluminometer Turner Design TD 20/20 (USA), using the free radical generator system based on
luminol (1 mM), H2O2 (10 µM) in Tris–HCl buffer solution (pH 8.6), all chemicals being bought from
Merck. The in vitro antioxidant activity of the investigated samples was evaluated using the equation
Antioxidant activity = [(I0 − I)/I0] × 100%, where I0 is the maximum CL intensity at t = 5 s, for the
reaction mixture without the sample, and I is the maximum CL intensity at t = 5 s, for the reaction
mixture in the presence of the sample [56].

Antibacterial activity was assessed against pathogenic Gram-negative bacteria, Escherichia coli
ATCC 8738, by agar well diffusion method (qualitative assessment) [57,58]. The bacterial strain
was grown in Luria Bertani Agar (LBA) plates at 37 ◦C, in a medium with the following
composition—20 g/L agar (Fluka), 10 g/L peptone (Merck), 5 g/L yeast extract (Biolife), and 5 g/L
NaCl (Sigma Aldrich). The stock culture was maintained at 4 ◦C, the agar surface being inoculated by
spreading a volume of the bacterium inoculums. Thus, a well (diameter of 6 mm) punched (aseptically)
with a sterile cork borer was filled with a volume of 50 µL of the sample. Further, agar plates were
incubated at 37 ◦C for 24 h. The presence of a clear zone of inhibition (ZOI, mm) after incubation
indicates the antimicrobial effectiveness of the investigated sample.

In the case of cell culture, human fibroblast BJ cells (ATCC CRL-2522, USA) were grown in
MEM (minimal essential medium) supplemented with 2 mM l-Glutamine, 10% fetal calf serum (FCS),
100 units/mL of penicillin, and 100 µg/mL of streptomycin at 37 ◦C in a humidified incubator under
an atmosphere containing 5% CO2. All cell cultivation media and reagents were purchased from
Biochrom AG.

The biocompatibility was analyzed using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) tetrazolium, MTT reduction assay, the cells being seeded in 96 well plates (25,000 cells/well)
and cultured for 24 h in medium. After overnight incubation, the medium was changed and the
investigated sample in concentration varying from 0.03 to 0.25 mg/mL was added for 24 h. As negative
control, cells in medium without the investigated samples were used. Following incubation, the medium
was changed and MTT solution was added to each well to a final concentration of 1 mg/mL and
incubated for an additional 4 h, at 37 ◦C. Finally, the medium was collected and dimethylsulfoxide
(DMSO) was used to dissolve the insoluble formazan product. The absorbance of the samples was
recorded at 570 nm using a plate reader Mithras 940 (Berthold, Bad Wildbad, Germany). The data
were corrected for the background and the percentage of viable cells was obtained using the equation
Cell viability = [(A570 of treated cells)/(A570 of untreated cells)] × 100%. The sample concentration
that reduced the viability of the cells by half (IC50) were estimated by fitting the data with a logistical
sigmoidal equation using the software Origin 8.1 (Microcal Inc., Northampton, MA, USA).

3. Results and Discussions

Firstly, both components of the composites, ZnO and CdS, were investigated from structural,
optical, and morphological points of view (Figure 1). Thus, in the Figure 1a, the diffraction peaks at
31.8◦, 34.7◦, 36.3◦, 47.6◦, 56.6◦, 62.9◦, 66.4◦, 67.9◦, and 69.1◦ correspond to the Miller indices of the
reflecting planes (100), (002), (101), (102), (110), (103), (200), (112), and (201), respectively, indexed to
hexagonal wurtzite phase of ZnO (ICDD file no. 89-0510). In Figure 1a’, the main diffraction peaks at
26.5◦, 43.9◦, and 54.5◦ correspond to the Miller indices of the reflecting planes (111), (220), and (222),
respectively, assigned to the face-centered cubic phase of CdS (ICDD file no. 89-0440). Based on the
reflectance data, from the representation of Kubelka-Munk function F (R) = (1 − R)1/2/2R, where R is
the diffuse reflectance, the band gap value was estimated to be ~3.3 eV for ZnO (Figure 1b) and ~2.2 eV
for CdS (Figure 1b’); the values being in good agreement with those reported in the literature [7,18].
The SEM images of both pristine components revealed that the ZnO powder is formed by spindle
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structures with dimensions between 100 and 500 nm (Figure 1c), while the CdS powder contains
agglomerate nanoparticles of ~50 nm (Figure 1c’).Materials 2020, 13, x FOR PEER REVIEW 5 of 17 
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presents the data obtained for the ZnO–CdS15 composite powder. The XPS technique allows the 
information on the chemical composition from the surface sample and up to 10 nm in depth to be 
acquired [59]. Thus, in the survey spectrum (Figure 3a), the peaks can be attributed to Zn, O, Cd, S, 
and C; their concentrations are given in Table 1. The signature of C is linked to the hydrocarbon 
contaminants, which commonly appeared in the XPS spectra [60]. In Figure 3b, the peak at 1021.76 
eV is assigned to Zn2p3/2, confirming the presence of Zn in the Zn2+ chemical state [55]. In Figure 3c, 
the peaks at binding energies of 530.29, 531.56, and 532.31 eV are linked to the lattice oxygen of ZnO 
(OA) and molecular adsorbed oxygen (OB) coming from the contamination of the surface with 

Figure 1. (a,a’) XRD patterns; (b,b’) the representation of the Kubelka-Munk function involved in the
estimation of the band gap values; (c,c’) the SEM images of the pristine components: (a–c) ZnO and
(a’–c’) CdS.

In the case of ZnO–CdS composite powders, the XRD patterns exhibit mixed diffraction peaks
indexed to ZnO and CdS pristine components (Figure 2). It can be seen that the intensity of the
diffraction peak situated at 26.5◦, corresponding to the (111) plane of CdS, became stronger with the
increase of the CdS amount in the composites.
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Figure 2. XRD patterns of ZnO–CdS powders.

The surface chemical states of the composites were investigated by XPS analysis; Figure 3 presents
the data obtained for the ZnO–CdS15 composite powder. The XPS technique allows the information
on the chemical composition from the surface sample and up to 10 nm in depth to be acquired [59].
Thus, in the survey spectrum (Figure 3a), the peaks can be attributed to Zn, O, Cd, S, and C; their
concentrations are given in Table 1. The signature of C is linked to the hydrocarbon contaminants,
which commonly appeared in the XPS spectra [60]. In Figure 3b, the peak at 1021.76 eV is assigned
to Zn2p3/2, confirming the presence of Zn in the Zn2+ chemical state [55]. In Figure 3c, the peaks at
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binding energies of 530.29, 531.56, and 532.31 eV are linked to the lattice oxygen of ZnO (OA) and
molecular adsorbed oxygen (OB) coming from the contamination of the surface with oxygen and C–O
bonds, which are usually found on the surface sample exposed to air (OC, 532.31 eV), respectively [60].
It should be noted that oxygen vacancies and chemisorbed oxygen are involved in the photocatalytic
reactions by rapid charge transfer and also in the generation of the hydroxyl radicals [48]. In Figure 3d,
the peaks at 404.94 and 411.69 eV are assigned to Cd3d5/2 and Cd3d3/2, respectively, being characteristic
for Cd2+ in CdS bond [60]. In Figure 3e, the peaks at 161.22 and 162.48 eV are associated with S2p3/2

and S2p1/2, respectively, confirming that S exists mainly in the S2− chemical state on the composite
sample [61]. Thus, it can be concluded that the investigated composite sample contains only ZnO and
CdS; similar XPS data was also recorded for the other composites.

Table 1. Chemical state concentrations obtained from the analysis of the extended XPS spectrum of the
ZnO–CdS15 composite powder.

Chemical States %

Zn2p3/2 41.3
O1s 45.6
C1s 6.0

Cd3d 3.2
S2p 3.9
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The SEM images of synthesized ZnO–CdS composite powders (Figure 4) reveal a flower-like
structures, with sizes depending on the CdS amount added during the chemical synthesis. The growth
mechanism involved in the chemical synthesis of ZnO–CdS composites by chemical precipitation,
which leads to this particular morphology, was detailed in [53]. Based on the SEM images at lower
magnification and using the ImageJ software, we obtained the particle size distribution histograms for
all investigated samples.
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Figure 4. SEM images at two magnifications and particle size distribution histograms of ZnO–CdS 
powders: (a,a’,a’’) ZnO–CdS5; (b,b’,b’’) ZnO–CdS10; (c,c’,c’’) ZnO–CdS15; (d,d’,d’’) ZnO–CdS20; 
(e,e’,e’’) ZnO–CdS25. 

Figure 4. SEM images at two magnifications and particle size distribution histograms of ZnO–CdS
powders: (a,a’,a”) ZnO–CdS5; (b,b’,b”) ZnO–CdS10; (c,c’,c”) ZnO–CdS15; (d,d’,d”) ZnO–CdS20;
(e,e’,e”) ZnO–CdS25.
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The optical properties of pristine ZnO and ZnO–CdS composite powders were analyzed by
photoluminescence. Thus, all recorded PL spectra (Figure 5) disclose the characteristic ZnO emission
bands: One very weak, barely observed, in the UV domain related to band to band transitions, peaked
at~380 nm, and another broad intense in the visible region linked to defects with maximum at ~560 nm
in the pristine compound and at~580 nm in the composite powders.
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Taking into account that the chemical precipitation is a wet chemical synthesis method in which
the ZnO crystallites are formed by Zn(OH)2 dehydration, traces of this compound on the ZnO surface
can lead to the quenching of the ZnO exciton emission [62]. Moreover, the incorporation of hydroxyl
groups in the ZnO crystal lattice during the solution growth and to the oxygen defects can result in an
increasing of the intensity of the visible emission [63,64]. Although various mechanisms responsible for
the appearance of visible light are related to defects such as oxygen vacancy, zinc vacancy, interstitial
oxygen, interstitial zinc, etc. [65], the origin of this emission is still on debate.

Further, the photocatalytic activity of the pristine ZnO and ZnO–CdS composite powders was
evaluated, the measurements being made on MB under UV illumination. Although, the discoloration
rate was usually determined by a pseudo-first order linear regression corresponding to a simple
first-order reaction model [66,67], the experimental curves shown in Figure 6 reveal two linear regions;
the reaction rate constant values for each of them are given in Table 2.
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The presence of these two regions can be interpreted if we consider that the MB photocatalytic
discoloration involves the steps described below [66,67]:

Organic Dyes (MB) −→ Adsorption
k1
−→ Intermediate Product

k2
−→ Colourless Product (1)
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Table 2. The reaction rate constants, k1 and k2.

Sample k1 (min−1) k2 (min−1)

ZnO 0.00568 ± 0.00022 0.00172 ± 0.00002
ZnO–CdS5 0.00503 ± 0.00045 0.00151 ± 0.00002

ZnO–CdS10 0.00746 ± 0.00046 0.00163 ± 0.00003
ZnO–CdS15 0.00673 ± 0.00039 0.00176 ± 0.00003
ZnO–CdS20 0.00397 ± 0.00029 0.00116 ± 0.00002
ZnO–CdS25 0.00617 ± 0.00033 0.00150 ± 0.00002

The mechanism can be explained based on the peculiarity of our photocatalytic measurements.
Generally, the investigation regarding the degradation of a dye in the presence of a photocatalyst in
powder form is performed in an aqueous solution. As mentioned above, in this study, the photocatalytic
tests were carried on samples obtained by immersing the powders disposed on glass substrates into
MB aqueous solutions, further the powder impregnated with MB solution being dried in order to
eliminate the water molecules, only the MB molecules remaining on the powder surface. In this way
takes place the adsorption of MB molecules on the surface of the sample. Then, under UV irradiation,
the MB discoloration leads to the formation of intermediate products, with a kinetic rate constant
k1, subsequently these being transformed into colorless products, with a kinetic rate constant k2.
Due to saturation with intermediate and colorless products of the powder surface, for all investigated
samples, the k2 values are smaller than the k1 values. All ZnO–CdS composite powders (excepting
the ZnO–CdS20) presented better photocatalytic activity than that of the pristine ZnO. Additionally,
it has to be noticed that under UV light the MB discoloration does not occur in the absence of the
photocatalyst powders, the measured reaction rate constant value was −4.509 × 10−7 min−1.

The MB discoloration efficiency of the ZnO–CdS composite powders is shown in Figure 7.
According to [55,68], the mechanism involved in a dye discoloration in the presence of ZnO–CdS
composites (the test was made in aqueous solution) can be described as follows: During the light
irradiation, the band alignment between the two semiconductor components of the composites leads
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to the accumulation of the electrons in the ZnO conduction band and of the holes in the CdS valence
band; the active species (hydroxyl radicals) generated by these charges being responsible for the dye
degradation [21].
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It is important to mention that when similar ZnO–CdS composites were used for the
photodegradation of rhodamine B in aqueous solution, the presence of intrinsic defects and
axial paramagnetic centers (so-called “shallow effective-mass donor” centers) can enhance their
photocatalytic activity [53]. Hence, the presence of such defects and centers can explain why the
correlation between the MB discoloration efficiency and the CdS amount from the composites is not a
linear one, in our case; the best results being obtained for ZnO–CdS10 and ZnO–CdS15 powders.

In order to detect the active species, OH•, involved in the MB discoloration, the photoluminescence
investigations using TA as probe molecule were performed (Figure 8). Accordingly, under light
irradiation, in aqueous solution, the reaction between TA and OH• generated by the photocatalyst
powder leads to the formation of the TAOH, a highly fluorescent product, the intensity of its emission
band being proportional to the OH• amount produced on the surface of the photocatalyst. The emission
spectra acquired at different irradiation times on pristine ZnO and ZnO–CdS15 composite powders
(Figure 8a) disclose that when the irradiation time increases, the intensity of the emission band centered
at ~425 nm also increases, the generation rate of OH• being proportional to the irradiation time
(Figure 8b); similar data being also recorded for the other composites. Moreover, the ZnO–CdS
composite generates a larger OH• amount in comparison with the pristine ZnO, confirming that the
presence of CdS along the ZnO as composite can improve the MB discoloration.
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irradiation time for ZnO and ZnO–CdS15 powders.

Finally, the biological properties such as antioxidant capacity, antibacterial activity, and cytotoxicity
of the ZnO, CdS, and ZnO–CdS composites were analyzed.

The antioxidant capacity was assessed in vitro by chemiluminescence technique, the data being
presented in Figure 9. The ZnO–CdS composite powders show medium antioxidant activity with
values ranging between 35% and 52%, the parameter increasing with the increase of the CdS amount
in the composites. An explanation for this result takes into account a recent study which provides
evidence that the antioxidant activity of ZnO nanoparticles can be related to the transfer of electron
density located at oxygen, to the odd electron located at outer orbits of oxygen in HO• and O2

•−

species [69]. We assume that a similar process can take place in the case of our ZnO–CdS composite,
where the electron density located at oxygen and sulfur can be transferred to the odd electron of
activated oxygen species.
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Figure 9. In vitro antioxidant capacity of ZnO, CdS, and ZnO–CdS powders.

The antibacterial activity was evaluated against Escherichia coli Gram-negative bacteria, because
this one has new forms which are responsible for various diseases [70]. Figure 10 displays the diameter
of the inhibition zone for the Escherichia coli ATCC 8738 bacterial strain generated by each investigated
powder, the ZOI diameter increasing also with the increase of the CdS amount in the composites.
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Figure 10. Antibacterial activity of ZnO, CdS, and ZnO–CdS powders against Escherichia coli ATCC
8738 and the corresponding zone of inhibition.

Regarding the increase of ZOI diameter (Figure 11), this follows the equation:
ZOICdS = 18.4 − 10.5/(1 + exp((CCdS% − 3)/0.58)); (R2 = 0.99362). This dependence of ZOI with
increasing CdS amount in the composites could help to estimate the diameter of the inhibition
zone induced by a particular CdS amount in the ZnO–CdS powders.
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Figure 11. ZOI diameter (in mm) exhibited by the ZnO–CdS powders vs. CdS concentration. 
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Figure 11. ZOI diameter (in mm) exhibited by the ZnO–CdS powders vs. CdS concentration.

For the pristine ZnO, the antibacterial mechanism can be described as: The structures interact
directly with the E. coli cell walls, damaging the integrity of the bacterial cell, then they penetrate
inside the cell causing membrane dysfunction and finally the death of the cell [71]. Comparatively, the
pristine CdS induces less antibacterial activity due to its poor aqueous solubility [72]. By combining
the both components into composites, the presence of ZnO improves the CdS water solubility, allowing
a considerable better cellular uptake of the ZnO–CdS into the E. coli cells. It is known that, in the
culture media, metal and metal oxide nanoparticles can release, from their surfaces, metallic positively
charged ions, which can adhere by electrostatic forces to the negative charges of the peptidoglycan
network from the bacterial cell wall, and in this way damaging it and altering the normal physiological
processes of cells [73,74]. We suppose that a similar interaction can occur also between the ZnO–CdS
particles and E. coli cell walls. On the other hand, the morphology of the composite materials can
influence their antimicrobial properties. Thus, the particular flower morphology of the ZnO–CdS
composite can help aid the destruction of the bacterial cell walls.
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The cytotoxicity was tested against BJ cells for concentrations between 0.03 and 0.25 mg/mL;
the results are given in Figure 12. ZnO and CdS in pristine form do not affect the viability of human
fibroblast cells in the range of tested concentrations. For the ZnO–CdS5 composite, the viability of
the cells decreases with the increase of the composite concentration, the viability decreasing to ~10%
for the highest tested concentration. From the viability curve of this sample, the IC50 value was
evaluated as being 57 µg/mL. The ZnO–CdS10 composite affects even more the viability of the cells
having an IC50 of 50 µg/mL. The other composites, containing larger CdS amounts, were toxic even at
the lowest tested concentrations, having IC50 of 17 µg/mL (ZnO–CdS15), 8.7 µg/mL (ZnO–CdS20),
and 3 µg/mL (ZnO–CdS25). Although, the toxicity of ZnO–CdS composites increases with the CdS
amount, taking into account the cytotoxic data, the ZnO–CdS5 and ZnO–CdS10 composites can be
safely used, at concentrations less than 0.05 mg/mL.
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Figure 12. Cytotoxic effect of ZnO, CdS, and ZnO–CdS powders on BJ cells evaluated using MTT 
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Based on the photocatalytic tests and on the preliminary bioassay evaluation, it can be concluded
that ZnO–CdS composites can find applications as photocatalytic and/or biocidal additives for
photoactive coatings, paints, epoxy floors, etc.

4. Conclusions

ZnO–CdS composite powders were prepared by chemical precipitation and were characterized
from the morphological, structural, compositional, photocatalytical, and biological points of view.
In pristine form, both components are featured by their typical structural and optical signatures:
Hexagonal wurtzite phase and a band gap value at ~3.3 eV for ZnO and face-centered cubic phase and a
band gap value at ~2.2 eV for CdS. The SEM images reveal that the ZnO is formed by spindle structures,
the CdS by agglomerate nanoparticles, and the ZnO–CdS composites by flower-like structures with
sizes depending on the CdS amount added during their chemical synthesis. The photocatalytic
activity of the obtained samples was analyzed under UV irradiation using powders impregnated
with MB solution; the tests confirmed that the presence of CdS along the ZnO can improve the MB
discoloration. Biological properties such as antioxidant capacity, antibacterial activity, and cytotoxicity
of ZnO, CdS, and ZnO–CdS composites were assessed. The ZnO–CdS composites present medium
antioxidant effect, biocidal activity against Escherichia coli, and no toxicity (at concentrations less
than 0.05 mg/mL for composites with a low CdS amount) for human fibroblast cells. Thus, using
a simple wet synthesis method, which involves inexpensive equipment and raw readily available
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materials, ZnO–CdS composites can be prepared in large quantities and used as photocatalytic and/or
biocidal additives for photoactive coatings, paints, epoxy floors, etc.; these providing a cleaner and
healthier environment.
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