Influence of Synthetic Bone Substitutes on the Anchorage Behavior of Open-Porous Acetabular Cup
Abstract
1. Introduction
2. Materials and Methods
2.1. Cup Design
2.2. Fabrication
2.3. Measurements
2.4. Statistical Analysis
3. Results
3.1. Accuracy of Fabricated Samples
3.2. Initial Stability
3.3. Microscopy
3.4. Correlations—Lever-out Moment and Pull-out Force versus Density and Volume of the Press-Fit Area
4. Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Vasconcellos, L.M.R.; De Oliveira, M.V.; Graça, M.L.D.A.; De Vasconcellos, L.G.O.; Carvalho, Y.R.; Cairo, C.A.A. Porous titanium scaffolds produced by powder metallurgy for biomedical applications. Mater. Res. 2008, 11, 275–280. [Google Scholar] [CrossRef]
- Müller, U.; Imwinkelried, T.; Horst, M.; Sievers, M.; Graf-Hausner, U. Do human osteoblasts grow into open-porous titanium? Eur. Cells Mater. 2006, 11, 8–15. [Google Scholar] [CrossRef]
- Hazlehurst, K.; Wang, C.J.; Stanford, M. Evaluation of the stiffness characteristics of square pore CoCrMo cellular structures manufactured using laser melting technology for potential orthopaedic applications. Mater. Des. 2013, 51, 949–955. [Google Scholar] [CrossRef]
- Parthasarathy, J.; Starly, B.; Raman, S.; Christensen, A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J. Mech. Behav. Biomed. Mater. 2010, 3, 249–259. [Google Scholar] [CrossRef]
- Schwerdtfeger, J.; Heinl, P.; Singer, R.F.; Korner, C. Auxetic cellular structures through selective electron-beam melting. Phys. States Solidi (B) 2010, 247, 269–272. [Google Scholar] [CrossRef]
- Yan, M.; Yu, P. An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti-6Al-4V—Comparison among Selective Laser Melting, Electron Beam Melting, Laser Metal Deposition and Selective Laser Sintering, and with Conventional Powder, Sinter. Tech. Mater. 2015, 76–106. [Google Scholar] [CrossRef]
- Becker, S.T.; Bolte, H.; Krapf, O.; Seitz, H.; Douglas, T.; Sivananthan, S.; Wiltfang, J.; Sherry, E.; Warnke, P.H. Endocultivation: 3D printed customized porous scaffolds for heterotopic bone induction. Oral Oncol. 2009, 45, e181–e188. [Google Scholar] [CrossRef] [PubMed]
- Jonitz-Heincke, A.; Wieding, J.; Schulze, C.; Hansmann, D.; Bader, R. Comparative Analysis of the Oxygen Supply and Viability of Human Osteoblasts in Three-Dimensional Titanium Scaffolds Produced by Laser-Beam or Electron-Beam Melting. Materials 2013, 6, 5398–5409. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Heredia, M.A.; Goyenvalle, E.; Aguado, E.; Pilet, P.; Leroux, C.; Dorget, M.; Weiss, P.; Layrolle, P. Bone growth in rapid prototyped porous titanium implants. J. Biomed. Mater. Res. A 2008, 85, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Swarts, E.; Bucher, T.A.; Phillips, M.; Yap, F.H. Does the Ingrowth Surface Make a Difference? A Retrieval Study of 423 Cementless Acetabular Components. J. Arthroplast. 2015, 30, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Le Cann, S.; Galland, A.; Rosa, B.; Le Corroller, T.; Pithioux, M.; Argenson, J.-N.; Chabrand, P.; Parratte, S. Does surface roughness influence the primary stability of acetabular cups? A numerical and experimental biomechanical evaluation. Med Eng. Phys. 2014, 36, 1185–1190. [Google Scholar] [CrossRef]
- Long, M.; Rack, H.J. Titanium alloys in total joint replacement—A materials science perspective. Biomaterials 1998, 19, 1621–1639. [Google Scholar] [CrossRef]
- Van Noort, R. Titanium: The implant material of today. J. Mater. Sci. 1987, 22, 3801–3811. [Google Scholar] [CrossRef]
- Olivares, A.L.; Marsal, È.; Planell, J.A.; Lacroix, D. Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 2009, 30, 6142–6149. [Google Scholar] [CrossRef]
- Takemoto, M.; Fujibayashi, S.; Neo, M.; Suzuki, J.; Kokubo, T.; Nakamura, T. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials 2005, 26, 6014–6023. [Google Scholar] [CrossRef]
- Small, S.R.; Berend, M.E.; Howard, L.A.; Rogge, R.D.; Buckley, C.A.; Ritter, M.A. High Initial Stability in Porous Titanium Acetabular Cups: A Biomechanical Study. J. Arthroplast. 2013, 28, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.M.; Campoli, G.; Yavari, S.A.; Sajadi, B.; Wauthle, R.; Schrooten, J.; Weinans, H.; Zadpoor, A.A. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J. Mech. Behav. Biomed. Mater. 2014, 34, 106–115. [Google Scholar] [CrossRef]
- Tunchel, S.; Blay, A.; Kolerman, R.; Mijiritsky, E.; Shibli, J.A. 3D Printing/Additive Manufacturing Single Titanium Dental Implants: A Prospective Multicenter Study with 3 Years of Follow-Up. Int. J. Dent. 2016, 2016, 8590971. [Google Scholar] [CrossRef]
- Emmelmann, C.; Scheinemann, P.; Münsch, M.; Seyda, V. Laser Additive Manufacturing of Modified Implant Surfaces with Osseointegrative Characteristics. Phys. Procedia 2011, 12, 375–384. [Google Scholar] [CrossRef]
- Heinl, P.; Müller, L.; Körner, C.; Singer, R.F.; Müller, F.A. Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 2008, 4, 1536–1544. [Google Scholar] [CrossRef] [PubMed]
- Murr, L.E.; Quinones, S.A.; Gaytan, S.M.; López, M.I.; Rodela, A.; Martinez, E.Y.; Hernandez, D.H.; Martinez, E.; Medina, F.; Wicker, R. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2009, 2, 20–32. [Google Scholar] [CrossRef]
- Nickels, L. World’s first patient-specific jaw implant. Met. Powder Rep. 2012, 67, 12–14. [Google Scholar] [CrossRef]
- Jamshidinia, M.; Wang, L.; Tong, W.; Kovacevic, R. The bio-compatible dental implant designed by using non-stochastic porosity produced by Electron Beam Melting® (EBM). J. Mater. Process. Technol. 2014, 214, 1728–1739. [Google Scholar] [CrossRef]
- Wang, L.; Kang, J.; Sun, C.; Li, D.; Cao, Y.; Jin, Z. Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants. Mater. Des. 2017, 133, 62–68. [Google Scholar] [CrossRef]
- Jetté, B.; Brailovski, V.; Dumas, M.; Simoneau, C.; Terriault, P. Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing. J. Mech. Behav. Biomed. Mater. 2018, 77, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Simoneau, C.; Terriault, P.; Jetté, B.; Dumas, M.; Brailovski, V. Development of a porous metallic femoral stem: Design, manufacturing, simulation and mechanical testing. Mater. Des. 2017, 114, 546–556. [Google Scholar] [CrossRef]
- Kim, J.T.; Yoo, J.J. Implant Design in Cementless Hip Arthroplasty. Hip Pelvis 2016, 28, 65–75. [Google Scholar] [CrossRef]
- Li, S.; Murr, L.; Cheng, X.; Zhang, Z.; Hao, Y.; Yang, R.; Medina, F.; Wicker, R.; Murr, L. Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater. 2012, 60, 793–802. [Google Scholar] [CrossRef]
- Wegrzyn, J.; Kaufman, K.R.; Hanssen, A.D.; Lewallen, D.G. Performance of Porous Tantalum vs. Titanium Cup in Total Hip Arthroplasty: Randomized Trial with Minimum 10-Year Follow-Up. J. Arthroplast. 2015, 30, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Fusi, S.; Pressacco, M.; Paussa, L.; Fedrizzi, L. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium. J. Mech. Behav. Biomed. Mater. 2010, 3, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, V.; Vicente, J.; Ramn, J.; Portols, L. Additive Manufacturing Solutions for Improved Medical Implants; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Toossi, N.; Adeli, B.; Timperley, A.J.; Haddad, F.S.; Maltenfort, M.; Parvizi, J. Acetabular Components in Total Hip Arthroplasty: Is There Evidence That Cementless Fixation Is Better? J. Bone Jt. Surg. 2013, 95, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Bjørgul, K.; Novicoff, W.M.; Andersen, S.T.; Brevig, K.; Thu, F.; Wiig, M.; Ahlund, O. No differences in outcomes between cemented and uncemented acetabular components after 12–14 years: Results from a randomized controlled trial comparing Duraloc with Charnley cups. J. Orthop. Traumatol. 2010, 11, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Murr, L.E.; Gaytan, S.M.; Medina, F.; Lopez, H.; Martinez, E.; Machado, B.I.; Hernandez, D.H.; Martinez, L.; Lopez, M.I.; Wicker, R.B.; et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1999–2032. [Google Scholar] [CrossRef]
- Li, F.; Li, J.; Xu, G.; Liu, G.; Kou, H.; Zhou, L. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications. J. Mech. Behav. Biomed. Mater. 2015, 46, 104–114. [Google Scholar] [CrossRef]
- Adler, E.; Stuchin, S.; Kummer, F. Stability of press-fit acetabular cups. J. Arthroplast. 1992, 7, 295–301. [Google Scholar] [CrossRef]
- Ries, M.D.; Harbaugh, M.; Shea, J.; Lambert, R. Effect of cementless acetabular cup geometry on strain distribution and press-fit stability. J. Arthroplast. 1997, 12, 207–212. [Google Scholar] [CrossRef]
- Macdonald, W.; Carlsson, L.V.; Charnley, G.J.; Jacobsson, C.M. Press-fit acetabular cup fixation: Principles and testing. Proc. Inst. Mech. Eng. H J. Eng. Med. 1999, 213, 33–39. [Google Scholar] [CrossRef]
- Morlock, M.; Sellenschloh, K.; Götzen, N. Bestimmung der Primärstabilität von künstlichen Hüftpfannen; DVM: Berlin, Germany, 2002. [Google Scholar]
- Harrison, N.; McHugh, P.; Curtin, W.; Mc Donnell, P. Micromotion and friction evaluation of a novel surface architecture for improved primary fixation of cementless orthopaedic implants. J. Mech. Behav. Biomed. Mater. 2013, 21, 37–46. [Google Scholar] [CrossRef]
- Amirouche, F.; Solitro, G.; Broviak, S.; Gonzalez, M.; Goldstein, W.; Barmada, R. Factors influencing initial cup stability in total hip arthroplasty. Clin. Biomech. 2014, 29, 1177–1185. [Google Scholar] [CrossRef]
- Clarke, H.J.; Jinnah, R.H.; Warden, K.E.; Eng, M.B.; Cox, Q.G.; Curtis, M.J. Evaluation of acetabular stability in uncemented prostheses. J. Arthroplast. 1991, 6, 335–340. [Google Scholar] [CrossRef]
- Klanke, J.; Partenheimer, A.; Westermann, K. Biomechanical qualities of threaded acetabular cups. Int. Orthop. 2002, 26, 278–282. [Google Scholar] [PubMed]
- Baleani, M.; Fognani, R.; Toni, A. Initial Stability of a Cementless Acetabular Cup Design: Experimental Investigation on the Effect of Adding Fins to the Rim of the Cup. Artif. Organs 2001, 25, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Olory, B.; Havet, E.; Gabrion, A.; Vernois, J.; Mertl, P. Comparative in vitro assessment of the primay stability of cementless press-fit acetabular cups. Acta Orthop. Belg. 2004, 70, 31–37. [Google Scholar]
- Fritsche, A.; Zietz, C.; Teufel, S.; Kolp, W.; Tokar, I.; Mauch, C.; Mittelmeier, W.; Bader, R. In-Vitro and in-Vivo Investigations of the Impaction and Pull-Out Behavior of Metal-Backed Acetabular Cups. J. Bone Jt. Surg. Br. 2011, 93, 406. [Google Scholar]
- Bürkner, A. Biomechanische Untersuchungen des Einschraubverhaltens und der Primärstabilität zementfreier Hüftpfannenimplantate. Ph.D. Thesis, Ludwig-Maximilians-Universität Zu München, München, Germany, 2007. [Google Scholar]
- Wetzel, R. Verankerungsprinzipien in der Hüftendoprothetik; Springer-Verlag: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Rhinelander, F.W. A flexible composite as a coating for metallic implants microvascular and histological studies. Int. Orthop. 1977, 1, 77–86. [Google Scholar] [CrossRef]
- Schouman, T.; Schmitt, M.; Adam, C.; Dubois, G.; Rouch, P. Influence of the overall stiffness of a load-bearing porous titanium implant on bone ingrowth in critical-size mandibular bone defects in sheep. J. Mech. Behav. Biomed. Mater. 2016, 59, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, D.S.; Harrysson, O.L.; Marcellin-Little, D.J.; Abumoussa, S.; Dahners, L.E.; Weinhold, P.S. Osseointegration of Coarse and Fine Textured Implants Manufactured by Electron Beam Melting and Direct Metal Laser Sintering. 3D Print. Addit. Manuf. 2017, 4, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.P.; Tan, Y.J.; Chow, C.S.L.; Tor, S.B.; Yeong, W.Y. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater. Sci. Eng. C 2017, 76, 1328–1343. [Google Scholar] [CrossRef]
- Palmquist, A.; Shah, F.A.; Emanuelsson, L.; Omar, O.; Suska, F. A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry. Micron 2017, 94, 1–8. [Google Scholar] [CrossRef]
- Weißmann, V.; Boss, C.; Schulze, C.; Hansmann, H.; Bader, R. Experimental Characterization of the Primary Stability of Acetabular Press-Fit Cups with Open-Porous Load-Bearing Structures on the Surface Layer. Metals 2018, 8, 839. [Google Scholar] [CrossRef]
- ISO 844. Rigid Cellular Plastics - Determination of Compression Properties, German version EN ISO 844:2009; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- ISO 845. Cellular Plastics and Rubbers -- Determination of Apparent Density, German version EN ISO 845:2009; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- Lohmann, S. Eigenschaften Biologischer Materialien zur Simulation Menschlicher Bewegung; Univ. Konstanz, Fachbereich Geschichte Und Soziologie: Konstanz, Germany, 2005; p. 172. Available online: http://deposit.ddb.de/cgi-bin/dokserv?idn=974539120&dok_var=d1&dok_ext=pdf&filename=974539120.pdf (accessed on 11 March 2019).
- Dalstra, M.; Huiskes, R.; Odgaard, A.V.; Van Erning, L. Mechanical and textural properties of pelvic trabecular bone. J. Biomech. 1993, 26, 523–535. [Google Scholar] [CrossRef]
- Antoniades, G.; Smith, E.J.; Deakin, A.H.; Wearing, S.C.; Sarungi, M. Primary stability of two uncemented acetabular components of different geometry: Hemispherical or peripherally enhanced? Bone Jt. Res. 2013, 2, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Markel, D.C.; Hora, N.; Grimm, M. Press-fit stability of uncemented hemispheric acetabular components: A comparison of three porous coating systems. Int. Orthop. 2002, 26, 72–75. [Google Scholar]
- Li, B.; Aspden, R.M. Composition and Mechanical Properties of Cancellous Bone from the Femoral Head of Patients with Osteoporosis or Osteoarthritis. J. Bone Miner. Res. 1997, 12, 641–651. [Google Scholar] [CrossRef]
- Weißmann, V.; Boss, C.; Bader, R.; Hansmann, H. A novel approach to determine primary stability of acetabular press-fit cups. J. Mech. Behav. Biomed. Mater. 2018, 80, 1–10. [Google Scholar] [CrossRef]
- Fox, J.C.; Moylan, S.P.; Lane, B.M. Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing. Procedia CIRP 2016, 45, 131–134. [Google Scholar] [CrossRef]
- Rashed, M.G.; Ashraf, M.; Mines, R.A.W.; Hazell, P.J. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Mater. Des. 2016, 95, 518–533. [Google Scholar] [CrossRef]
- Suard, M.; Martin, G.; Lhuissier, P.; Dendievel, R.; Vignat, F.; Blandin, J.-J.; Villeneuve, F. Mechanical equivalent diameter of single struts for the stiffness prediction of lattice structures produced by Electron Beam Melting. Addit. Manuf. 2015, 8, 124–131. [Google Scholar] [CrossRef]
- Weißmann, V.; Drescher, P.; Bader, R.; Seitz, H.; Hansmann, H.; Laufer, N. Comparison of Single Ti6Al4V Struts Made Using Selective Laser Melting and Electron Beam Melting Subject to Part Orientation. Metals 2017, 7, 91. [Google Scholar] [CrossRef]
- Bellini, C.M.; Galbusera, F.; Ceroni, R.G.; Raimondi, M.T. Loss in mechanical contact of cementless acetabular prostheses due to post-operative weight bearing: A biomechanical model. Med. Eng. Phys. 2007, 29, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Udofia, I.; Liu, F.; Jin, Z.; Roberts, P.; Grigoris, P. The initial stability and contact mechanics of a press-fit resurfacing arthroplasty of the hip. J. Bone Jt. Surg. Br. Vol. 2007, 89, 549–556. [Google Scholar] [CrossRef]
- Moehlenbruch, A.; Zimmermann-Stenzel, M.; Parsch, D. 5-Jahres-Ergebnisse der zementfreien Allofit®-Press-fit-Pfanne. Der Orthopäde 2010, 39, 87–91. [Google Scholar]
- Lachiewicz, P.F.; Suh, P.B.; A Gilbert, J. In vitro initial fixation of porous-coated acetabular total hip components. A biomechanical comparative study. J. Arthroplast. 1989, 4, 201–205. [Google Scholar] [CrossRef]
- Søballe, K.; Hansen, E.S.; Rasmussen, H.B.; Jørgensen, P.H.; Bünger, C. Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J. Orthop. Res. 1992, 10, 285–299. [Google Scholar] [CrossRef]
- Schneider, E.; Eulenberger, J.; Steiner, W.; Wyder, D.; Friedman, R.; Perren, S. Experimental method for the in vitro testing of the initial stability of cementless hip prostheses. J. Biomech. 1989, 22, 735–744. [Google Scholar] [CrossRef]
- Pilliar, R.M. Powder Metal-Made Orthopedic Implants with Porous Surface for Fixation by Tissue Ingrowth. Clin. Orthop. Relat. Res. 1983, 176, 42–51. [Google Scholar] [CrossRef]
- Cameron, H.U.; Pilliar, R.M.; Macnab, I. The effect of movement on the bonding of porous metal to bone. J. Biomed. Mater. Res. 1973, 7, 301–311. [Google Scholar] [CrossRef]
- Crosnier, E.A.; Keogh, P.S.; Miles, A.W. A novel method to assess primary stability of press-fit acetabular cups. Proc. Inst. Mech. Eng. H J. Eng. Med. 2014, 228, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Souffrant, R.; Zietz, C.; Fritsche, A.; Kluess, D.; Mittelmeier, W.; Bader, R. Advanced material modelling in numerical simulation of primary acetabular press-fit cup stability. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 787–793. [Google Scholar] [CrossRef]
- Wieding, J.; Jonitz, A.; Bader, R. The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds. Materials 2012, 5, 1336–1347. [Google Scholar] [CrossRef]
- Alvarez, K.; Nakajima, H. Metallic Scaffolds for Bone Regeneration. Materials 2009, 2, 790–832. [Google Scholar] [CrossRef]
- Vasconcellos, L.; Leite, D.; Nascimento, F.; Vasconcellos, L.; Graca, M.; Carvalho, Y.; Cairo, C. Porous titanium for biomedical applications: An experimental study on rabbits. Medicina Oral Patologia Oral y Cirugia Buccal 2010, 15, e407–e412. [Google Scholar] [CrossRef]
- Wieding, J.; Lindner, T.; Bergschmidt, P.; Bader, R. Biomechanical stability of novel mechanically adapted open-porous titanium scaffolds in metatarsal bone defects of sheep. Biomaterials 2015, 46, 35–47. [Google Scholar] [CrossRef] [PubMed]
Dimensions Unit Cell | Twisted (V) | Combined (D) | ||
---|---|---|---|---|
Parameter | V4_09 | V4_10 | D4_09 | D4_08 |
Width—a (mm) | 2.83 | 2.83 | 4 | 4 |
Depth—b (mm) | 2.83 | 2.83 | 4 | 4 |
Height—c (mm) | 4 | 4 | 4 | 4 |
Strut diameter—d (mm) | 0.9 | 1.0 | 0.9 | 0.8 |
Porosity of the structure area (%) | 72.5 | 67.4 | 61.1 | 66.9 |
Volume—press-fit area (cm3) | 0.30 | 0.39 | 0.97 | 0.91 |
Property | ROHACELL IGF 110 | Sawbones pcf 20 | SikaBlock M330 | Human Bone |
---|---|---|---|---|
Density (kg/m3) | 97.6 | 328.6 | 236 | 50–1000 |
Compressive modulus (MPa) | 137–168 | 238–276 | 133–183 | 10–2000 |
Compressive strength (MPa) | 3.2 | 8.4 | 3.4 | 0.9–9 |
Name | Press-Fit Cup | Press-Fit (mm) | ||||||
---|---|---|---|---|---|---|---|---|
Best Fit Circle (mm) | Roundness (mm) | SikaBlock | Sawbones | ROHACELL | ||||
V4_09 | 54.90 | 0.29 | 2.05 | ±0.02 | 2.03 | ±0.02 | 2.02 | ±0.02 |
V4_10 | 55.03 | 0.02 | 2.09 | ±0.02 | 2.02 | ±0.02 | 2.02 | ±0.03 |
D4_08 | 54.98 | 0.30 | 2.08 | ±0.01 | 2.03 | ±0.03 | 2.03 | ±0.01 |
D4_09 | 55.04 | 0.11 | 2.02 | ±0.01 | 2.03 | ±0.02 | 2.02 | ±0.01 |
SikaBlock | Sawbone | ROHACELL | SikaBlock | Sawbones | ROHACELL | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cup | Seating Force/Pull-out (N) | Seating Force/Lever-out (N) | ||||||||||
V4_09 | 3266 | ±218 | 4551 | ±574 | 1849 | ±46 | 2814 | ±308 | 6025 | ±855 | 1813 | ±86 |
V4_10 | 2971 | ±151 | 5248 | ±184 | 1943 | ±46 | 1952 | ±76 | 5504 | ±1012 | 1965 | ±123 |
D4_08 | 4339 | ±264 | 5459 | ±572 | 2635 | ±21 | 3775 | ±210 | 5475 | ±50 | 2460 | ±59 |
D4_09 | 4173 | ±135 | 6528 | ±1819 | 2669 | ±32 | 3495 | ±208 | 6445 | ±653 | 2408 | ±91 |
Cup | Pull-out Force (N) | Lever-out Force (N) | ||||||||||
V4_09 | 310 | ±24 | 386 | ±43 | 147 | ±7 | 24 | ±7 | 81 | ±15 | 10 | ±1 |
V4_10 | 308 | ±11 | 508 | ±21 | 157 | ±7 | 28 | ±4 | 78 | ±22 | 10 | ±2 |
D4_08 | 708 | ±38 | 793 | ±44 | 323 | ±13 | 90 | ±6 | 128 | ±4 | 21 | ±2 |
D4_09 | 704 | ±32 | 1181 | ±145 | 305 | ±10 | 83 | ±7 | 168 | ±19 | 23 | ±2 |
Pull-out Force | Lever-out Forcece | ||||||||
---|---|---|---|---|---|---|---|---|---|
Bone material | Cup | V4_10 | D4_08 | D4_09 | Cup | V4_10 | D4_08 | D4_09 | |
ROHACELL | V4_09 | n.s. | <0.0001 | 0.0002 | V4_09 | n.s. | n.s. | n.s. | |
V4_10 | - | 0.0002 | <0.0001 | V4_10 | - | 0.0300 | 0.0029 | ||
D4_08 | - | - | n.s. | D4_08 | - | - | n.s. | ||
Sawbone | V4_09 | n.s. | 0.0010 | 0.0016 | V4_09 | n.s. | 0.0080 | 0.0003 | |
V4_10 | - | 0.0020 | 0.0058 | V4_10 | - | 0.0592 | 0.0101 | ||
D4_08 | - | - | 0.0420 | D4_08 | - | - | 0.0456 | ||
SikaBlock | V4_09 | n.s. | <0.0001 | <0.0001 | V4_09 | n.s. | <0.0001 | 0.0002 | |
V4_10 | - | <0.0001 | <0.0001 | V4_10 | - | 0.0006 | 0.0005 | ||
D4_08 | - | - | n.s. | D4_08 | - | - | n.s. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weißmann, V.; Ramskogler, T.; Schulze, C.; Bader, R.; Hansmann, H. Influence of Synthetic Bone Substitutes on the Anchorage Behavior of Open-Porous Acetabular Cup. Materials 2019, 12, 1052. https://doi.org/10.3390/ma12071052
Weißmann V, Ramskogler T, Schulze C, Bader R, Hansmann H. Influence of Synthetic Bone Substitutes on the Anchorage Behavior of Open-Porous Acetabular Cup. Materials. 2019; 12(7):1052. https://doi.org/10.3390/ma12071052
Chicago/Turabian StyleWeißmann, Volker, Tim Ramskogler, Christian Schulze, Rainer Bader, and Harald Hansmann. 2019. "Influence of Synthetic Bone Substitutes on the Anchorage Behavior of Open-Porous Acetabular Cup" Materials 12, no. 7: 1052. https://doi.org/10.3390/ma12071052
APA StyleWeißmann, V., Ramskogler, T., Schulze, C., Bader, R., & Hansmann, H. (2019). Influence of Synthetic Bone Substitutes on the Anchorage Behavior of Open-Porous Acetabular Cup. Materials, 12(7), 1052. https://doi.org/10.3390/ma12071052