Method of Optimisation for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications
Abstract
:1. Introduction
2. Materials
3. Experimental Procedure
3.1. Mixture Proportions and Mixing Procedure
3.2. Printing and Curing of Specimens
3.3. Testing
3.3.1. Workability
3.3.2. Extrudability
3.3.3. Shape Retention Ability
3.3.4. Compressive Strength
3.3.5. Flexural Strength
3.3.6. Interlayer Bond Strength
4. Results and Discussions
4.1. Results of Part I
4.1.1. Extrudability
4.1.2. Workability
4.1.3. Shape Retention Ability
4.1.4. Compressive Strength
4.2. Results of Part II
4.2.1. Compressive Strength
4.2.2. Flexural Strength
4.2.3. Interlayer Bond Strength
5. Conclusions
- The parameters investigated had insignificant impact on the extrudability of the mixtures, as no blockage, tearing, segregation, or bleeding was observed during the extrusion process of all mixtures. This is because the dosage of admixtures (i.e., viscosity modifying agent and retarder) were adjusted in each mixture to obtain beneficial rheological properties appropriate for concrete 3D printing, based on the extrusion method.
- The mixture parameters investigated had considerable effects on the workability of the fresh printable geopolymers. In general, the sodium (Na)-based geopolymers had higher workability than the potassium (K)-based ones, which indicates the lower yield stress of the Na-based geopolymers than that of the K-based geopolymers.
- The shape retention ability of the printable geopolymers made from the Na2SiO3 solution with SiO2/Na2O of 3.22 (N grade) was higher than that of the mixtures made from the Na2SiO3 solution with SiO2/Na2O of 2.00 (D grade) for all SS/HS mass ratios.
- Na-based printable geopolymers had higher compressive strengths than K-based ones for all types of SS and SS/HS mass ratios.
- The compressive strengths of the optimum printable mixture for the printed materials tested in the longitudinal, perpendicular and lateral directions were 34.0, 26.1 and 19.8 MPa, respectively.
- The flexural strengths of the optimum printable mixture for the printed materials tested in the perpendicular and lateral directions were 7.10 and 6.30 MPa, respectively.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput. Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Lim, S.; Buswell, R.A.; Le, T.T.; Austin, S.A.; Gibb, A.G.; Thorpe, T. Developments in construction-scale additive manufacturing processes. Autom. Constr. 2012, 21, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Wangler, T.; Lloret, E.; Reiter, L.; Hack, N.; Gramazio, F.; Kohler, M.; Bernhard, M.; Dillenburger, B.; Buchli, J.; Roussel, N. Digital concrete: Opportunities and challenges. RILEM Tech. Lett. 2016, 1, 67–75. [Google Scholar] [CrossRef]
- Nematollahi, B.; Xia, M.; Sanjayan, J. Current progress of 3D concrete printing technologies. In Proceedings of the International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 28 June–1 July 2017; pp. 260–267. [Google Scholar]
- Paul, S.C.; van Zijl, G.P.; Tan, M.J.; Gibson, I. A review of 3D concrete printing systems and materials properties: Current status and future research prospects. Rapid Prototyp. J. 2018, 24, 784–798. [Google Scholar] [CrossRef]
- Rael, R.; San Fratello, V. Developing Concrete Polymer Building Components for 3D Printing. 2011. Available online: http://www.rael-sanfratello.com/media/emerging_objects/papers/243.pdf (accessed on 27 April 2018).
- Cesaretti, G.; Dini, E.; de Kestelier, X.; Colla, V.; Pambaguian, L. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut. 2014, 93, 430–450. [Google Scholar] [CrossRef]
- Khoshnevis, B.; Bukkapatnam, S.; Kwon, H.; Saito, J. Experimental investigation of contour crafting using ceramics materials. Rapid Prototyp. J. 2001, 7, 32–42. [Google Scholar] [CrossRef]
- Kazemian, A.; Yuan, X.; Cochran, E.; Khoshnevis, B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Constr. Build. Mater. 2017, 145, 639–647. [Google Scholar] [CrossRef]
- Zareiyan, B.; Khoshnevis, B. Interlayer adhesion and strength of structures in contour crafting-effects of aggregate size, extrusion rate, and layer thickness. Autom. Constr. 2017, 81, 112–121. [Google Scholar] [CrossRef]
- Le, T.T.; Austin, S.A.; Lim, S.; Buswell, R.A.; Gibb, A.G.; Thorpe, T. Mix design and fresh properties for high-performance printing concrete. Mater. Struct. 2012, 45, 1221–1232. [Google Scholar] [CrossRef] [Green Version]
- Le, T.T.; Austin, S.A.; Lim, S.; Buswell, R.A.; Law, R.; Gibb, A.G.; Thorpe, T. Hardened properties of high-performance printing concrete. Cem. Concr. Res. 2012, 42, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Nerella, V.; Krause, M.; Näther, M.; Mechtcherine, V. CONPrint3D—3D printing technology for onsite construction. Concr. Aust. 2016, 42, 36–39. [Google Scholar]
- Gosselin, C.; Duballet, R.; Roux, P.; Gaudillière, N.; Dirrenberger, J.; Morel, P. Large-scale 3D printing of ultra-high performance concrete—A new processing route for architects and builders. Mater. Des. 2016, 100, 102–109. [Google Scholar] [CrossRef]
- Marchment, T.; Xia, M.; Dodd, E.; Sanjayan, J.; Nematollahi, B. Effect of delay time on the mechanical properties of extrusion-based 3D printed concrete. In Proceedings of the International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 28 June–1 July 2017; pp. 240–245. [Google Scholar]
- Sarker, P.K.; Mcbeath, S. Fire endurance of steel reinforced fly ash geopolymer concrete elements. Constr. Build. Mater. 2015, 90, 91–98. [Google Scholar] [CrossRef]
- Taylor, M.; Tam, C.; Gielen, D. Energy efficiency and CO2 emissions from the global cement industry. Korea 2006, 50, 61–67. [Google Scholar]
- Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A. Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate. Ceram. Int. 2015, 41, 5696–5704. [Google Scholar] [CrossRef]
- Li, Z.; Ding, Z.; Zhang, Y. Development of sustainable cementitious materials. Proceedings of International Workshop on Sustainable Development and Concrete Technology, Beijing, China, 20–21 May 2004; pp. 55–76. [Google Scholar]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Van Deventer, J.S. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Sanjayan, J. Materials technology research to structural design of geopolymer concrete. In Mechanics of Structures and Materials XXIV; CRC Press: Boca Raton, FL, USA, 2016; pp. 60–69. [Google Scholar]
- Panda, B.; Paul, S.C.; Hui, L.J.; Tay, Y.W.D.; Tan, M.J. Additive manufacturing of geopolymer for sustainable built environment. J. Clean. Prod. 2017, 167, 281–288. [Google Scholar] [CrossRef]
- Panda, B.; Unluer, C.; Tan, M.J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cem. Concr. Compos. 2018, 94, 307–314. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem. Concr. Compos. 2015, 55, 205–214. [Google Scholar] [CrossRef]
- Panias, D.; Giannopoulou, I.P.; Perraki, T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007, 301, 246–254. [Google Scholar] [CrossRef]
- Sathonsaowaphak, A.; Chindaprasirt, P.; Pimraksa, K. Workability and strength of lignite bottom ash geopolymer mortar. J. Hazard. Mater. 2009, 168, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Nematollahi, B.; Qiu, J.; Yang, E.-H.; Sanjayan, J. Microscale investigation of fiber-matrix interface properties of strain-hardening geopolymer composite. Ceram. Int. 2017, 43, 15616–15625. [Google Scholar] [CrossRef]
- Nematollahi, B.; Qiu, J.; Yang, E.H.; Sanjayan, J. Micromechanics constitutive modelling and optimization of strain hardening geopolymer composite. Ceram. Int. 2017, 43, 5999–6007. [Google Scholar] [CrossRef]
- Panda, B.; Paul, S.C.; Mohamed, N.A.N.; Tay, Y.W.D.; Tan, M.J. Measurement of tensile bond strength of 3D printed geopolymer mortar. Measurement 2018, 113, 108–116. [Google Scholar] [CrossRef]
- Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.; Rangan, B.V. On the development of fly ash-based geopolymer concrete. Mater. J. 2004, 101, 467–472. [Google Scholar]
- ASTM. Standard Test Method for Flow of Hydraulic Cement Mortar; C1437-15; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Bong, S.H.; Nematollahi, B.; Nazari, A.; Xia, M.; Sanjayan, J.G. Fresh and hardened properties of 3D printable geopolymer cured in ambient temperature. In Proceedings of the RILEM International Conference on Concrete and Digital Fabrication, Zurich, Swithzerland, 10–12 September 2018; pp. 3–11. [Google Scholar]
- Panda, B.; Tan, M.J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceram. Int. 2018, 44, 10258–10265. [Google Scholar] [CrossRef]
- Wallevik, J.E. Relationship between the Bingham parameters and slump. Cem. Concr. Res. 2006, 36, 1214–1221. [Google Scholar] [CrossRef]
- Nadoushan, M.J.; Ramezanianpour, A.A. The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers. Constr. Build. Mater. 2016, 111, 337–347. [Google Scholar] [CrossRef]
- Komljenović, M.; Baščarević, Z.; Bradić, V. Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J. Hazard. Mater. 2010, 181, 35–42. [Google Scholar] [CrossRef]
- Law, D.W.; Adam, A.A.; Molyneaux, T.K.; Patnaikuni, I.; Wardhono, A. Long term durability properties of class F fly ash geopolymer concrete. Mater. Struct. 2015, 48, 721–731. [Google Scholar] [CrossRef]
- Palomo, A.; Grutzeck, M.; Blanco, M. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Sanjayan, J.G.; Nematollahi, B.; Xia, M.; Marchment, T. Effect of surface moisture on interlayer strength of 3D printed concrete. Constr. Build. Mater. 2018, 172, 468–475. [Google Scholar] [CrossRef]
- Panda, B.; Paul, S.C.; Tan, M.J. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater. Lett. 2017, 209, 146–149. [Google Scholar] [CrossRef]
- Nematollahi, B.; Xia, M.; Bong, S.H.; Sanjayan, J. Hardened properties of 3D printable ‘one-part’geopolymer for construction applications. Proceedings of RILEM International Conference on Concrete and Digital Fabrication, Zurich, Swithzerland, 10–12 September 2018; pp. 190–199. [Google Scholar]
- Deb, P.S.; Nath, P.; Sarker, P.K. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. 2014, 62, 32–39. [Google Scholar] [CrossRef]
- Oxman, N.; Tsai, E.; Firstenberg, M. Digital anisotropy: A variable elasticity rapid prototyping platform: This paper proposes and demonstrates a digital anisotropic fabrication approach by employing a multi-material printing platform to fabricate materials with controlled gradient properties. Virtual Phys. Prototyp. 2012, 7, 261–274. [Google Scholar] [CrossRef]
Chemical | Component | |
---|---|---|
Slag | Fly Ash | |
Al2O3 | 12.4 | 25.6 |
SiO2 | 32.8 | 51.1 |
CaO | 44.6 | 4.30 |
Fe2O3 | 0.54 | 12.5 |
K2O | 0.33 | 0.70 |
MgO | 5.15 | 1.45 |
Na2O | 0.22 | 0.77 |
P2O5 | 0.88 | 0.01 |
TiO2 | 0.51 | 1.32 |
MnO | 0.15 | 0.37 |
SO3 | 4.26 | 0.24 |
L.O.I. 1 | 0.09 | 0.57 |
Type of SS | SiO2/M2O * | SiO2 (wt.%) | M2O * (wt.%) | H2O (wt.%) | Viscosity 1 (cps) | Density 1 (g/cc) |
---|---|---|---|---|---|---|
D Grade Na2SiO3 | 2.00 | 29.4 | 14.7 | 55.9 | 250–450 | 1.52 |
N Grade Na2SiO3 | 3.22 | 28.7 | 8.9 | 62.4 | 100–300 | 1.38 |
KASIL 2040 Grade K2SiO3 | 2.02 | 26.7 | 13.3 | 60.0 | 100–300 | 1.39 |
KASIL 2236 Grade K2SiO3 | 2.22 | 24.5 | 11.0 | 64.5 | 80–120 | 1.33 |
Mix Designation | Source Materials | Activator | Sand | Borax g | CMC h | W/GP-Solids | ||
---|---|---|---|---|---|---|---|---|
HS | SS | CS | FS | |||||
Na-D-1.5 | 1.000 | 0.160 a | 0.240 c | 1.000 | 0.500 | 0.002 | 0.015 | 0.220 |
Na-D-2.5 | 1.000 | 0.114 a | 0.286 c | 1.000 | 0.500 | 0.002 | 0.020 | 0.211 |
Na-D-3.0 | 1.000 | 0.100 a | 0.300 c | 1.000 | 0.500 | 0.002 | 0.020 | 0.208 |
Na-N-1.5 | 1.000 | 0.160 a | 0.240 d | 1.000 | 0.500 | 0.002 | 0.011 | 0.236 |
Na-N-2.5 | 1.000 | 0.114 a | 0.286 d | 1.000 | 0.500 | 0.002 | 0.013 | 0.231 |
Na-N-3.0 | 1.000 | 0.100 a | 0.300 d | 1.000 | 0.500 | 0.002 | 0.010 | 0.229 |
K-KA20-1.5 | 1.000 | 0.160 b | 0.240 e | 1.000 | 0.500 | 0.002 | 0.010 | 0.222 |
K-KA20-2.5 | 1.000 | 0.114 b | 0.286 e | 1.000 | 0.500 | 0.004 | 0.009 | 0.218 |
K-KA20-3.0 | 1.000 | 0.100 b | 0.300 e | 1.000 | 0.500 | 0.005 | 0.007 | 0.216 |
K-KA22-1.5 | 1.000 | 0.160 b | 0.240 f | 1.000 | 0.500 | 0.005 | 0.008 | 0.234 |
K-KA22-2.5 | 1.000 | 0.114 b | 0.286 f | 1.000 | 0.500 | 0.005 | 0.006 | 0.232 |
K-KA22-3.0 | 1.000 | 0.100 b | 0.300 f | 1.000 | 0.500 | 0.005 | 0.004 | 0.231 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bong, S.H.; Nematollahi, B.; Nazari, A.; Xia, M.; Sanjayan, J. Method of Optimisation for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications. Materials 2019, 12, 902. https://doi.org/10.3390/ma12060902
Bong SH, Nematollahi B, Nazari A, Xia M, Sanjayan J. Method of Optimisation for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications. Materials. 2019; 12(6):902. https://doi.org/10.3390/ma12060902
Chicago/Turabian StyleBong, Shin Hau, Behzad Nematollahi, Ali Nazari, Ming Xia, and Jay Sanjayan. 2019. "Method of Optimisation for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications" Materials 12, no. 6: 902. https://doi.org/10.3390/ma12060902
APA StyleBong, S. H., Nematollahi, B., Nazari, A., Xia, M., & Sanjayan, J. (2019). Method of Optimisation for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications. Materials, 12(6), 902. https://doi.org/10.3390/ma12060902