Hybrid Superconducting-Ferromagnetic [Bi2Sr2(Ca,Y)2Cu3O10]0.99(La2/3Ba1/3MnO3)0.01 Composite Thick Films
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saxena, S.S.; Agarwal, P.; Ahilan, K.; Grosche, F.M.; Haselwimmer, R.K.; Steiner, M.J.; Pugh, E.; Walker, I.R.; Julian, S.R.; Monthoux, P.; et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2. Nature 2000, 406, 587–592. [Google Scholar] [CrossRef]
- Li, X.-H.; Huang, Y.-H.; Wang, Z.-M.; Yan, C.-H. Tuning between negative and positive magnetoresistance in (La0.7Sr0.3MnO3)1−x(La1.85Sr0.15CuO4)x composites. Appl. Phys. Lett. 2002, 81, 307–309. [Google Scholar] [CrossRef]
- Hsu, D.; Kumary, T.G.; Lin, L.; Lin, J.G. Coexistence of superconductivity and magnetism in the composite material (La1.85Sr0.15CuO4)1−x(La0.3Dy0.4Sr0.3MnO3)x. Phys. Rev. B 2006, 74, 214504. [Google Scholar] [CrossRef]
- Yao, X.; Jin, Y.; Li, M.; Li, Z.; Cao, G.; Cao, S.; Zhang, J. Coexistence of superconductivity and ferromagnetism in La1.85Sr0.15CuO4-La2/3Sr1/3MnO3 matrix composites. J. Alloy. Compd. 2011, 509, 5472–5476. [Google Scholar] [CrossRef]
- Chien, T.Y.; Kourkoutis, L.F.; Chakhalian, J.; Gray, B.; Kareev, M.; Guisinger, N.P.; Muller, D.A.; Freeland, J.W. Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides. Nat. Commun. 2013, 4, 2336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bawa, A.; Gupta, A.; Singh, S.; Awana, V.P.S.; Sahoo, S. Ultrasensitive interplay between ferromagnetism and superconductivity in NbGd composite thin films. Sci. Rep. 2016, 6, 18689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hals, K.M.D.; Schecter, M.; Rudner, M.S. Composite topological excitations in ferromagnet-superconductor heterostructures. Phys. Rev. Lett. 2016, 117, 017001. [Google Scholar] [CrossRef]
- Zhang, G.; Samuely, T.; Xu, Z.; Jochum, J.K.; Volodin, A.; Zhou, S.; May, P.W.; Onuftiienko, O.; Kačmarčík, J.; Steele, J.A.; et al. Superconducting ferromagnetic nanodiamond. ACS Nano 2017, 11, 5358–5366. [Google Scholar] [CrossRef]
- Rouco, V.; Córdoba, R.; De Teresa, J.M.; Rodríguez, L.A.; Navau, C.; Del-Valle, N.; Via, G.; Sánchez, A.; Monton, C.; Kronast, F.; et al. Competition between superconductor-ferromagnetic stray magnetic fields in YBa2Cu3O7−x films pierced with Co nano-rods. Sci. Rep. 2017, 7, 5663. [Google Scholar] [CrossRef]
- Vélez, M.; Martín, J.I.; Villegas, J.E.; Hoffmann, A.; González, E.M.; Vicent, J.L.; Schuller, I.K. Superconducting vortex pinning with artificial magnetic nanostructures. J. Magn. Magn. Mater. 2008, 320, 2547–2562. [Google Scholar] [CrossRef]
- Aladyshkin, A.Y.; Silhanek, A.V.; Gillijns, W.; Moshchalkov, V.V. Nucleation of superconductivity and vortex matter in superconductor-ferromagnet hybrids. Supercond. Sci. Technol. 2009, 22, 053001. [Google Scholar] [CrossRef]
- Blamire, M.G.; Robinson, J.W.A. The interface between superconductivity and magnetism: Understanding and device prospects. J. Phys. Condens. Matter 2014, 26, 453201. [Google Scholar] [CrossRef]
- Sarma, S.D.; Hui, H.-Y.; Brydon, P.M.R.; Sau, J.D. Substrate-induced Majorana renormalization in topological nanowires. New J. Phys. 2015, 17, 075001. [Google Scholar] [CrossRef] [Green Version]
- Delfanazari, K.; Puddy, R.K.; Ma, P.; Yi, T.; Cao, M.; Gul, Y.; Farrer, I.; Ritchie, D.A.; Joyce, H.J.; Kelly, M.J.; et al. On-chip andreev devices: Hard superconducting gap and quantum transport in ballistic Nb-In0.75Ga0.25As-Quantum-Well-Nb Josephson junctions. Adv. Mater. 2017, 29, 1701836. [Google Scholar] [CrossRef]
- Delfanazari, K.; Puddy, R.K.; Ma, P.; Yi, T.; Cao, M.; Gul, Y.; Farrer, I.; Ritchie, D.A.; Joyce, H.J.; Kelly, M.J.; et al. Proximity induced superconductivity in indium gallium arsenide quantum wells. J. Magn. Magn. Mater. 2018, 459, 282–284. [Google Scholar] [CrossRef]
- Srinivasu, V.V.; Lofland, S.E.; Bhagat, S.M. Room temperature colossal microwave magnetoimpedance in micron-size powders of La0.7Ba0.3MnO3 and La0.7Sr0.3MnO3-A novel magnetic tape. J. Appl. Phys. 1998, 83, 2866–2868. [Google Scholar] [CrossRef]
- Chatterji, T.; Regnault, L.P.; Schmidt, W. Spin dynamics of La0.7Ba0.3MnO3. Phys. Rev. B 2002, 66, 214408. [Google Scholar] [CrossRef]
- Im, H.S.; Chon, G.B.; Lee, S.M.; Koo, B.H.; Lee, C.G.; Jung, M.H. Preparation and characterization of La0.7AE0.3MnO3 (AE=Ca, Sr, Ba): Perovskite structured manganites. J. Magn. Magn. Mater. 2007, 310, 2668–2670. [Google Scholar] [CrossRef]
- Orgiani, P.; Guarino, A. Magnetotransport properties of epitaxial strain-less La0.7Ba0.3MnO3 thin films. J. Appl. Phys. 2007, 101, 033904. [Google Scholar] [CrossRef]
- Orgiani, P.; Ciancio, R.; Galdi, A.; Amoruso, S.; Maritato, L. Physical properties of La0.7Ba0.3MnO3-δ complex oxide thin films grown by pulsed laser deposition technique. Appl. Phys. Lett. 2010, 96, 032501. [Google Scholar] [CrossRef]
- Shibutani, K.; Li, Q.; Sabatini, R.L.; Suenaga, M. Limiting factors for critical current densities in Bi2Sr2Ca2Cu3O10-Ag composite superconducting tapes at elevated temperatures. Appl. Phys. Lett. 1993, 63, 3515–3517. [Google Scholar] [CrossRef]
- Adachi, S.; Usui, T.; Takahashi, K.; Kosugi, K.; Watanabe, T.; Nishizaki, T.; Adachi, T.; Kimura, S.; Sato, K.; Suzuki, K.M.; et al. Single crystal growth of undoped Bi-2223. Phys. Procedia 2015, 65, 53–56. [Google Scholar] [CrossRef]
- Paredes, O.; Morán, O.; Baca, E. Temperature and field dependent critical currents in [(Bi,Pb)2Sr2Ca2Cu3Ox]0.07(La0.7Sr0.3MnO3)0.03 thick films grown on LaAlO3 substrates. J. Appl. Phys. 2013, 113, 043916. [Google Scholar] [CrossRef]
- Delfanazari, K.; Asai, H.; Tsujimoto, M.; Kashiwagi, T.; Kitamura, T.; Ishida, K.; Watanabe, C.; Sekimoto, S.; Yamamoto, T.; Minami, H.; et al. Terahertz Oscillating Devices Based Upon the Intrinsic Josephson Junctions in a High Temperature Superconductor. J. Infrared Millim. Terahertz Waves 2014, 35, 131–146. [Google Scholar] [CrossRef]
- Kalhor, S.; Ghanaatshoar, M.; Kashiwagi, T.; Kadowaki, K. Thermal tuning of high-Tc superconducting Bi2Sr2CaCu2O8+δ. IEEE Photonics J. 2017, 9, 1400308. [Google Scholar]
- Klug, H.; Alexander, L. X-Ray Diffraction Procedures; John Wiley & Sons, Inc.: New York, NY, USA, 1962; p. 491. [Google Scholar]
- Benseman, T.M.; Cooper, J.R.; Zentile, C.L.; Lemberger, L.; Balakrishnan, G. Valency and spin states of substituent cations in Bi2.15Sr1.85CaCu2O8+δ. Phys. Rev. B 2011, 84, 144503. [Google Scholar] [CrossRef]
- Anderson, P.W.; Kim, Y.B. Hard superconductivity: Theory of the motion of abrikosov flux lines. Rev. Mod. Phys. 1964, 36, 39–43. [Google Scholar] [CrossRef]
- Bean, C.P. Magnetization of high-field superconductors. Rev. Mod. Phys. 1964, 36, 31–39. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejía-Salazar, J.R.; Perea, J.D.; Castillo, R.; Diosa, J.E.; Baca, E. Hybrid Superconducting-Ferromagnetic [Bi2Sr2(Ca,Y)2Cu3O10]0.99(La2/3Ba1/3MnO3)0.01 Composite Thick Films. Materials 2019, 12, 861. https://doi.org/10.3390/ma12060861
Mejía-Salazar JR, Perea JD, Castillo R, Diosa JE, Baca E. Hybrid Superconducting-Ferromagnetic [Bi2Sr2(Ca,Y)2Cu3O10]0.99(La2/3Ba1/3MnO3)0.01 Composite Thick Films. Materials. 2019; 12(6):861. https://doi.org/10.3390/ma12060861
Chicago/Turabian StyleMejía-Salazar, J. Ricardo, José Darío Perea, Roberto Castillo, Jesús Evelio Diosa, and Eval Baca. 2019. "Hybrid Superconducting-Ferromagnetic [Bi2Sr2(Ca,Y)2Cu3O10]0.99(La2/3Ba1/3MnO3)0.01 Composite Thick Films" Materials 12, no. 6: 861. https://doi.org/10.3390/ma12060861