Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process
Abstract
:1. Introduction
2. Experimental
3. Results and discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nail, B.A.; Fields, J.M.; Zhao, J.; Wang, J. Nickel oxide particles catalyze photochemical hydrogen evolution from water—Nanoscaling promotes P-Type character and minority carrier extraction. ACS Nano 2015, 9, 5135–5142. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, Z.; Zhang, M.; Zhao, Z. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 2015, 15, 2402–2408. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wu, Y.; Fan, J.; Djurišić, A.B. Understanding the doping effect on NiO: Toward high-performance inverted perovskite solar cells. Adv. Energy Mater. 2018, 8, 1703519. [Google Scholar] [CrossRef]
- Liu, C.; Chen, C.; Tseng, Y.C. Core-shell Ni-NiO nano arrays for UV photodetection without an external bias. J. Electrochem. Soc. 2012, 159, K78–K82. [Google Scholar] [CrossRef]
- Hasan, M.; Jamal, M.; Razeeb, K.M. Coaxial NiO/Ni nanowire arrays for high performance pseudocapacitor applications. Electrochim. Acta 2012, 60, 193–200. [Google Scholar] [CrossRef]
- Majhi, S.M.; Naik, G.K.; Lee, H.J.; Song, H.G.; Lee, C.R. Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sens. Actuators B 2018, 268, 223–231. [Google Scholar] [CrossRef]
- Oka, K.; Yanagida, T.; Nagashima, K.; Kawai, T. Resistive-switching memory effects of NiO nanowire/metal junctions. J. Am. Chem. Soc. 2010, 132, 6634–6635. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, M.; Tomar, M.; Gupta, V. Glad assisted synthesis of NiO nanorods for realization of enzymatic reagentless urea biosensor. Biosens. Bioelectron. 2014, 52, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Maiti, R.; Miah, M.; Saha, S.K. NiO nanoparticle synthesis using a triblock copolymer: Enhanced magnetization and high specific capacitance of electrodes prepared from the powder. ACS Omega 2017, 2, 283–289. [Google Scholar] [CrossRef]
- Ge, M.Y.; Han, L.Y.; Wiedwald, U.; Xu, X.B. Monodispersed NiO nanoflowers with anomalous magnetic behavior. Nanotechnology 2010, 21, 425702. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Lee, S.C.; Patil, U.M.; Ray, C. Controllable sulfuration engineered NiO nanosheets with enhanced capacitance for high rate supercapacitors. J. Mater. Chem. A 2017, 5, 4543–4549. [Google Scholar] [CrossRef]
- Gao, H.; Gao, D.; Zhang, J.; Zhang, Z. Synthesis and anomalous magnetic behaviour of NiO nanotubes and nanoparticles. Micro Nano Lett. 2012, 7, 5–8. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Z.; Dou, S.; Zhang, X.; Zhang, J. Facile preparation of aligned NiO nanotube arrays for electrochromic application. Surf. Coat. Technol. 2018, 337, 63–67. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Y.; Wang, Y.; Yang, X.; Wang, S. Hollow NiO nanotubes synthesized by bio-templates as the high performance anode materials of lithium-ion batteries. Electrochim. Acta 2013, 114, 42–47. [Google Scholar] [CrossRef]
- Fu, J.; Zhao, C.; Zhang, J.; Peng, Y. Enhanced gas sensing performance of electrospun Pt-functionalized NiO nanotubes with chemical and electronic sensitization. ACS Appl. Mater. Interfaces 2013, 5, 7410–7416. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Liu, Y.; Yao, J.; Sun, R. Influence of annealing temperature on the microstructure and magnetic properties of Ni/NiO core-shell nanowires. Phys. E 2018, 97, 363–370. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, J.; Liu, Y.; Hu, M.; Zhao, K.; Guo, H.; Jin, K. Facile controlled synthesis and magnetic properties of high-aspectratio nickel nanowires prepared by the dropping method. J. Alloy. Compd. 2017, 693, 257–263. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, W.; Liu, Y.; Hu, M.; Zhao, K. Synthesis of high-aspect-ratio nickel nanowires by dropping method. Nanoscale Res. Lett. 2016, 11, 118. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, W.; Dong, Z.; Luo, Y.; Zhao, J.; Wang, J.-o.; Ibrahim, K.; Zhan, H.; Yue, W.; Guo, H. Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process. Materials 2019, 12, 805. https://doi.org/10.3390/ma12050805
Xiang W, Dong Z, Luo Y, Zhao J, Wang J-o, Ibrahim K, Zhan H, Yue W, Guo H. Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process. Materials. 2019; 12(5):805. https://doi.org/10.3390/ma12050805
Chicago/Turabian StyleXiang, Wenfeng, Zibin Dong, Yi Luo, Jiali Zhao, Jia-ou Wang, Kurash Ibrahim, Haihong Zhan, Wenzheng Yue, and Haizhong Guo. 2019. "Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process" Materials 12, no. 5: 805. https://doi.org/10.3390/ma12050805
APA StyleXiang, W., Dong, Z., Luo, Y., Zhao, J., Wang, J.-o., Ibrahim, K., Zhan, H., Yue, W., & Guo, H. (2019). Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process. Materials, 12(5), 805. https://doi.org/10.3390/ma12050805