Easy, Quick, and Reproducible Sonochemical Synthesis of CuO Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
The Sonochemical Method
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Din, M.I.; Rehan, R. Synthesis, Characterization, and Applications of Copper Nanoparticles. Anal. Lett. 2017, 50, 50–62. [Google Scholar] [CrossRef]
- Benavente, E.; Lozano, H.; Gonzalez, G. Fabrication of Copper Nanoparticles: Advances in Synthesis, Morphology Control, and Chemical Stability. Recent Pat. Nanotechnol. 2013, 7, 108–132. [Google Scholar] [CrossRef] [PubMed]
- Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef] [PubMed]
- Khodashenas, B.; Ghorbani, H.R. Synthesis of copper nanoparticles: An overview of the various methods. Synthesis, Characterization, and Applications of Copper Nanoparticles. Korean J. Chem. Eng. 2014, 31, 1105–1109. [Google Scholar] [CrossRef]
- Alves, D.; Santos, C.G.; Paixão, M.W.; Soares, L.C.; De Souza, D.; Rodrigues, O.E.D.; Braga, A.L. CuO Nanoparticles: An Efficient and Recyclable Catalyst for Cross-Coupling Reactions of Organic Diselenides with Aryl Boronic Acids. Tetrahedron Lett. 2009, 50, 6635–6638. [Google Scholar] [CrossRef]
- Hendi, A.A.; Rashad, M. Photo-Induced Changes in Nano-Copper Oxide for Optoelectronic Applications. Phys. B Phys. Condens. Matter 2018, 538, 185–190. [Google Scholar] [CrossRef]
- Mikami, K.; Kido, Y.; Akaishi, Y.; Quitain, A.; Kida, T. Synthesis of Cu2O/CuO Nanocrystals and Their. Sensors 2019, 19, 211. [Google Scholar] [CrossRef]
- Safaei, M. Optimized Synthesis, Characterization, and Antibacterial Activity of an Alginate—Cupric Oxide Bionanocomposite. J. Appl. Polym. Sci. 2018, 135, 45682. [Google Scholar] [CrossRef]
- Grigore, M.E.; Biscu, E.R.; Holban, A.M.; Gestal, M.C.; Grumezescu, A.M. Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles. Pharmaceuticals 2016, 9, 75. [Google Scholar] [CrossRef]
- Kaweeteerawat, C.; Chang, C.H.; Roy, K.R.; Liu, R.; Li, R.; Toso, D.; Fischer, H.; Ivask, A.; Ji, Z.; Zink, J.I.; et al. Cu Nanoparticles Have Different Impacts in Escherichia coli and Lactobacillus brevis than Their Microsized and Ionic Analogues. ACS Nano 2015, 9, 7215–7225. [Google Scholar] [CrossRef]
- Zakharova, O.V.; Godymchuk, A.Y.; Gusev, A.A.; Gulchenko, S.I.; Vasyukova, I.A.; Kuznetsov, D.V. Considerable Variation of Antibacterial Activity of Cu Nanoparticles Suspensions Depending on the Storage Time, Dispersive Medium, and Particle Sizes. BioMed Res. Int. 2015, 2015, 412530. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, E.; Ahmed, R.A. Synthesis of Copper Nanoparticles with Various Sizes and Shapes: Application as a Superior Non-Enzymatic Sensor and Antibacterial Agent. Int. J. Electrochem. Sci. 2016, 11, 4712–4723. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, R.; Xu, B.; Li, Y. Synthesis, Characterization and Catalytic Properties of CuO Nanocrystals with Various Shapes. Nanotechnology 2006, 17, 3939–3943. [Google Scholar] [CrossRef]
- Meshram, S.P.; Adhyapak, P.V.; Mulik, U.P.; Amalnerkar, D.P. Facile Synthesis of CuO Nanomorphs and Their Morphology Dependent Sunlight Driven Photocatalytic Properties. Chem. Eng. J. 2012, 204–206, 158–168. [Google Scholar] [CrossRef]
- Liu, R.; Yin, J.; Du, W.; Gao, F.; Fan, Y.; Lu, Q. Monodisperse CuO Hard and Hollow Nanospheres as Visible-Light Photocatalysts. Eur. J. Inorg. Chem. 2013, 2013, 1358–1362. [Google Scholar] [CrossRef]
- Borgohain, K.; Singh, J. Quantum Size Effects in CuO Nanoparticles. Phys. Rev. B Condens. Matter Mater. Phys. 2000, 61, 11093–11096. [Google Scholar] [CrossRef]
- Min, Y.; Wang, T.; Chen, Y. Applied Surface Science Microwave-Assistant Synthesis of Ordered CuO Micro-Structures on Cu Substrate. Appl. Surf. Sci. 2010, 257, 132–137. [Google Scholar] [CrossRef]
- Chen, A.; Long, H.; Li, X.; Li, Y.; Yang, G.; Lu, P. Controlled Growth and Characteristics of Single-Phase Cu2O and CuO Films by Pulsed Laser Deposition. Vaccum 2009, 83, 927–930. [Google Scholar] [CrossRef]
- Xiao, G.; Gao, P.; Wang, L.; Chen, Y.; Wang, Y.; Zhang, G. Ultrasonochemical-Assisted Synthesis of CuO Nanorods with High Hydrogen Storage Ability. J. Nanomater. 2011, 2011, 439162. [Google Scholar] [CrossRef]
- Kumar, R.V.; Elgamiel, R.; Diamant, Y.; Gedanken, A. Sonochemical Preparation and Characterization of Nanocrystalline Copper Oxide Embedded in Poly (Vinyl Alcohol) and Its Effect on Crystal Growth of Copper Oxide. Langmuir 2001, 17, 1406–1410. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.; Kim, B.; Kim, D. One-Pot Low-Temperature Sonochemical Synthesis of CuO Nanostructures and Their Electrochemical Properties. Ceram. Int. 2016, 42, 19454–19460. [Google Scholar] [CrossRef]
- Karunakaran, C.; Manikandan, G.; Gomathisankar, P. Microwave, Sonochemical and Combustion Synthesized CuO Nanostructures and Their Electrical and Bactericidal Properties. J. Alloys Compd. 2013, 580, 570–577. [Google Scholar] [CrossRef]
- Ranjbar-Karimi, R.; Bazmandegan-Shamili, A.; Aslani, A.; Kaviani, K. Sonochemical Synthesis, Characterization and Thermal and Optical Analysis of CuO Nanoparticles. Phys. B Phys. Condens. Matter 2010, 405, 3096–3100. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Fu, Y.; Zhang, B.; Xie, Z. Sonochemistry-Synthesized CuO Nanoparticles as Polymer Solar Cells. RSC Adv. 2015, 5, 28786–28793. [Google Scholar] [CrossRef]
- Wongpisutpaisan, N.; Charoonsuk, P. Sonochemical Synthesis and Characterization of Copper Oxide Nanoparticles. Energy Procedia 2011, 9, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Linke, D. Detergents: An Overview. Methods Enzymol. 2009, 463, 603–617. [Google Scholar] [CrossRef] [PubMed]
- De, S.; Mandal, S. Surfactant-Assisted Shape Control of Copper Nanostructures. Colloids Surf. A Physicochem. Eng. Asp. 2013, 421, 72–83. [Google Scholar] [CrossRef]
- Biçer, M.; Şişman, I. Controlled Synthesis of Copper Nano/Microstructures Using Ascorbic Acid in Aqueous CTAB Solution. Powder Technol. 2010, 198, 279–284. [Google Scholar] [CrossRef]
- Li, X.; Shen, J.; Du, A.; Zhang, Z.; Gao, G.; Yang, H.; Wu, J. Facile Synthesis of Silver Nanoparticles with High Concentration via a CTAB-Induced Silver Mirror Reaction. Colloids Surf. A Physicochem. Eng. Asp. 2012, 400, 73–79. [Google Scholar] [CrossRef]
- Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L.M. Shape Control in Gold Nanoparticle Synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791. [Google Scholar] [CrossRef]
- Rao, M.P.; Anandan, S.; Suresh, S.; Asiri, A.M.; Wu, J.J. Surfactant Assisted Synthesis of Copper Oxide Nanoparticles for Photocatalytic Degradation of Methylene Blue in the Presence of Visible Light. Energy Environ. Focus 2015, 4, 250–255. [Google Scholar] [CrossRef]
- Cao, V.D.; Tran, N.Q.; Nguyen, T.P.P. Synergistic Effect of Citrate Dispersant and Capping Polymers on Controlling Size Growth of Ultrafine Copper Nanoparticles. J. Exp. Nanosci. 2013, 10, 576–587. [Google Scholar] [CrossRef]
- Shenoy, U.S.; Shetty, A.N. Simple Glucose Reduction Route for One-Step Synthesis of Copper Nanofluids. Appl. Nanosci. 2012, 4, 47–54. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of Highly Stable Dispersions of Nanosized Copper Particles Using L-Ascorbic Acid. Green Chem. 2011, 13, 900–904. [Google Scholar] [CrossRef]
- Wu, S.; Chen, D. Synthesis of High-Concentration Cu Nanoparticles in Aqueous CTAB Solutions. J. Colloid Interface Sci. 2004, 273, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.M.; Zhou, D.B.; Yamamoto, Y.; Ichino, R.; Okido, M. Preparation of Cu Nanoparticles with NaBH4 by Aqueous Reduction Method. Trans. Nonferrous Met. Soc. China 2012, 22, 117–123. [Google Scholar] [CrossRef]
- Wang, H.; He, S.; Yu, S.; Shi, T.; Jiang, S. Template-Free Synthesis of Cu2O Hollow Nanospheres and Their Conversion into Cu Hollow Nanospheres. Powder Technol. 2009, 193, 182–186. [Google Scholar] [CrossRef]
- Litmanovich, O.E.; Tatarinov, V.S.; Litmanovich, A.A. Why the Size of Copper Nanoparticles Depends on the Nature of the Reducing Agent in the Preparation of Sols in a Cationic Polyelectrolyte Solution 1. Polym. Sci. Ser. B 2011, 53, 202–208. [Google Scholar] [CrossRef]
- Shim, I.; Noh, W.; Kwon, J.; Cho, J.Y.; Kim, K.; Kang, D.H. Preparation of Copper Nanoparticles in Cellulose Acetate Polymer and the Reaction Chemistry of Copper Complexes in the Polymer. Bull. Korean Chem. Soc. 2002, 23, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Glavee, G.N.; Klabunde, K.J.; Sorensen, C.M.; Hadjapanayis, G.C. Borohydride Reductions of Metal Ions. A New Understanding of the Chemistry Leading to Nanoscale Particles of Metals, Borides, and Metal Borates. Langmuir 1992, 8, 771–773. [Google Scholar] [CrossRef]
- Glavee, G.N.; Klabunde, K.J.; Sorensen, C.M.; Hadjipanayis, G.C. Borohydride Reduction of Nickel and Copper Ions in Aqueous and Nonaqueous Media. Controllable Chemistry Leading to Nanoscale Metal and Metal Boride Particles. Langmuir 1994, 10, 4726–4730. [Google Scholar] [CrossRef]
- Mulfinger, L.; Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C. Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 2007, 84, 322–325. [Google Scholar] [CrossRef]
- Schaeffer, G.W.; Waller, M.C.; Hohnstedt, L.F. Aqueous Sodium Borohydride Chemistry: Lead, Barium, Mercury, Cadmium, and Zinc. Anal. Chem. 1961, 33, 1719–1722. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, Internet Version 2005; CRC Press: Boca Ratón, FL, USA, 2005. [Google Scholar]
- Andal, V.; Buvaneswari, G. Preparation of Cu2O Nano-Colloid and Its Application as Selective Colorimetric Sensor for Ag+ ion. Sens. Actuators B Chem. 2011, 155, 653–658. [Google Scholar] [CrossRef]
- Suramwar, N.V.; Thakare, S.R.; Khaty, N.T. One pot Synthesis of Copper Nanoparticles at Room Temperature and Its Catalytic Activity. Arab. J. Chem. 2016, 9, S1807–S1812. [Google Scholar] [CrossRef]
- Mohd Yusof, N.S.; Ashokkumar, M. Ultrasonic Modification of Micelle Nanostructures. In Handbook of Ultrasonics and Sonochemistry; Springer: Singapore, 2016; pp. 491–524. [Google Scholar]
- Geng, J.; Zhu, J.J.; Lu, D.J.; Chen, H.Y. Hollow PbWO4 Nanospindles via a Facile Sonochemical Route. Inorg. Chem. 2006, 45, 8403–8407. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical Synthesis of Nanomaterials. Chem. Soc. Rev. 2012, 42, 2555–2567. [Google Scholar] [CrossRef] [PubMed]
- Zeiger, B.W.; Suslick, K.S. Sonofragmentation of Molecular Crystal. J. Am. Chem. Soc. 2011, 133, 14530–14533. [Google Scholar] [CrossRef]
- Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry: A Comprehensive Text, 4th ed.; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Chen, C.; Cheng, S.; Shi, T.; Zhong, Y.; Huang, Y.; Li, J.; Liao, G.; Tang, Z. Size Distribution Control of Copper Nanoparticles and Oxides: Effect of Wet-Chemical Redox Cycling. Inorg. Chem. 2019. [Google Scholar] [CrossRef]
- Dang, T.M.D.; Le, T.T.T.; Fribourg-Blanc, E.; Dang, M.C. Synthesis and Optical Properties of Copper Nanoparticles Prepared by a Chemical Reduction Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 015009–015015. [Google Scholar] [CrossRef]
- Andal, V.; Buvaneswari, G. Effect of Reducing Agents in the Conversion of Cu2O Nanocolloid to Cu Nanocolloid. Eng. Sci. Technol. Int. J. 2017, 20, 340–344. [Google Scholar] [CrossRef]
- Yeshchenko, O.A.; Dmitruk, I.M.; Dmytruk, A.M.; Alexeenko, A.A. Influence of Annealing Conditions on Size and Optical Properties of Copper Nanoparticles Embedded in Silica Matrix. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2007, 137, 247–254. [Google Scholar] [CrossRef]
- Pestryakov, A.N.; Petranovskii, V.P.; Kryazhov, A.; Ozhereliev, O.; Pfänder, N.; Knop-Gericke, A. Study of Copper Nanoparticles Formation on Supports of Different Nature by UV-Vis Diffuse Reflectance Spectroscopy. Chem. Phys. Lett. 2004, 385, 173–176. [Google Scholar] [CrossRef]
- Dhineshbabu, N.R.; Rajendran, V.; Nithyavathy, N.; Vetumperumal, R. Study of Structural and Optical Properties of Cupric Oxide Nanoparticles. Appl. Nanosci. 2016, 6, 933–939. [Google Scholar] [CrossRef]
- Langford, J.I.; Louër, D. High-Resolution Powder Diffraction Studies of Copper(II) Oxide. J. Appl. Crystallogr. 1991, 24, 149–155. [Google Scholar] [CrossRef]
- Li, A.; Song, H.; Zhou, J.; Chen, X.; Liu, S. CuO Nanowire Growth on Cu2O by in Situ Thermal Oxidation in Air. CrystEngComm 2013, 15, 8559–8564. [Google Scholar] [CrossRef]
Cu2+ | CTAB | NaBH4 | Diameter (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|---|---|
1 | 1 | 10 | 42 ± 9.3 | 0.401 | 29 ± 2.5 |
1 | 3 | 10 | 35 ± 1.3 | 0.542 | 32 ± 3.1 |
1 | 6 | 10 | 36 ± 1.3 | 0.150 | 37 ± 1.5 |
1 | 8 | 10 | 36 ± 2.9 | 0.181 | 39 ± 1.7 |
1 | 10 | 10 | 38 ± 1.9 | 0.264 | 42 ± 2.0 |
1 | 6 | 1 | 84 ± 5.9 | 0.141 | 39± 0.8 |
1 | 6 | 5 | 30 ± 1.2 | 0.184 | 31 ± 1.0 |
1 | 6 | 10 | 36 ± 1.3 | 0.150 | 37 ± 1.5 |
1 | 6 | 15 | 34 ± 3.1 | 0.299 | 36 ± 1.7 |
1 | 6 | 20 | 40 ± 0.9 | 0.224 | 39 ± 2.0 |
1 | 6 | 50 | 79 ± 8.7 | 0.204 | 44 ± 1.8 |
1 | 6 | 100 | 77 ± 6.5 | 0.349 | 37 ± 3.2 |
Miller Index (h k l) | Interplanar Distance dhkl (Å) | Intensity of Signal (%) |
---|---|---|
(1 1 0) | 2.75201 | 13 |
(1 1 −1) | 2.52367 | 100 |
(1 1 1) | 2.32429 | 99 |
(2 0 -2) | 1.86764 | 30 |
(2 0 2) | 1.58227 | 10 |
(1 1 -3) | 1.50660 | 20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, N.; Ramírez, S.; Díaz, I.; Garcia, A.; Hassan, N. Easy, Quick, and Reproducible Sonochemical Synthesis of CuO Nanoparticles. Materials 2019, 12, 804. https://doi.org/10.3390/ma12050804
Silva N, Ramírez S, Díaz I, Garcia A, Hassan N. Easy, Quick, and Reproducible Sonochemical Synthesis of CuO Nanoparticles. Materials. 2019; 12(5):804. https://doi.org/10.3390/ma12050804
Chicago/Turabian StyleSilva, Nataly, Sara Ramírez, Isaac Díaz, Andreina Garcia, and Natalia Hassan. 2019. "Easy, Quick, and Reproducible Sonochemical Synthesis of CuO Nanoparticles" Materials 12, no. 5: 804. https://doi.org/10.3390/ma12050804
APA StyleSilva, N., Ramírez, S., Díaz, I., Garcia, A., & Hassan, N. (2019). Easy, Quick, and Reproducible Sonochemical Synthesis of CuO Nanoparticles. Materials, 12(5), 804. https://doi.org/10.3390/ma12050804