Dynamic Thermomechanical Analysis on Water Tree Resistance of Crosslinked Polyethylene
Abstract
:1. Introduction
2. Experiments and Characterization Method
2.1. Sample Preparation
2.2. Crosslinking Degree Characterization
2.3. Accelerated Aging Experiment of the Water Tree
2.4. Tensile Property Test
2.5. Dynamic Thermomechanical Method
3. Results and Discussion
3.1. Crosslinking Degree Results
3.2. Water Tree Morphology
3.3. True Stress–Strain Characteristics
3.4. Viscoelastic Properties
3.5. Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xu, L.; Yang, L.; Yan, M.Y. Research on treeing retardant performance and test protocol of medium voltage XLPE power cables. In Proceedings of the 2008 China International Conference on Electricity Distribution, Guangzhou, China, 10–13 December 2008; pp. 1–5. [Google Scholar]
- Gulski, E.; Putter, H.; Smit, J.J. Investigation of water treeing—electrical treeing transition in power cables. In Proceedings of the 2008 International Conference on Condition Monitoring and Diagnosis, Beijing, China, 21–24 April 2008; pp. 234–237. [Google Scholar]
- Ross, R.; Smit, J.J. Composition and growth of water trees in XLPE. IEEE Trans. Electr. Insul. 1992, 27, 519–531. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, H.; Xu, Z.; Zhang, C.; Yang, J.; Zheng, C.; Lei, J. Accelerated water tree aging of crosslinked polyethylene with different degrees of crosslinking. Polym. Test. 2016, 56, 83–90. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, H.; Xu, Z.; Zhang, C.; Lei, J. Research on water tree aging of UV-photoinitiated crosslinking of linear low density polyethylene. Proc. CSEE 2018, 38, 2188–2197. (In Chinese) [Google Scholar]
- Schneider, I.A.; Mavru, E. Transitions in semi-crystalline polymers. Polym. Bull. 1979, 1, 877–881. [Google Scholar] [CrossRef]
- Huang, X.; Liu, F.; Jiang, P. Effect of nanoparticle surface treatment on morphology, electrical and water treeing behavior of LLDPE composites. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1697–1704. [Google Scholar] [CrossRef]
- Zhou, K.; Zhao, W.; Tao, X. Toward understanding the relationship between insulation recovery and micro structure in water tree degraded XLPE cables. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2135–2142. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, X.; Li, Y.; Wu, J. The influence of temperature on water treeing in polyethylene. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 544–551. [Google Scholar] [CrossRef]
- Ma, Z.; Huang, X.; Jiang, P. A comparative study of effects of SEBS and EPDM onthe water tree resistance of cross-linked polyethylene. Polym. Degrad. Stabil. 2010, 95, 1943–1949. [Google Scholar] [CrossRef]
- Yan, Q.; Xu, W.; Bengt, R. Photoinitiated cross1inking of low density polyethylene I: Reaction and kinetics. Polym. Eng. Sci. 1991, 31, 1561–1566. [Google Scholar] [CrossRef]
- IEC 60811-507:2012 Electric and Optical Fibre Cables-Test Methods for Non-Metallic Materials-Part 507: Mechanical Tests—Hot Set Test for Cross-Linked Materials; IEC: Geneva, Switzerland, 2012.
- ASTM D 2765-2011 Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics; ASTM: West Conshohocken, PA, USA, 2011.
- Zhang, C.; Li, C.; Nie, L.; Jing, Z.; Han, B. Research on the water blade electrode method for assessing water tree resistance of cross-linked polyethylene. Polym. Test. 2016, 50, 235–240. [Google Scholar] [CrossRef]
- GB/T 1040.2-2006 Plastics-Determination of Tensile Properties-Part 2: Test Conditions for Moulding and Extrusion Plastics; SAC Publication: Singapore, 2006. (In Chinese)
- Amoedo, J.; Lee, D. Modeling the uniaxial rate and temperature dependent behavior of amorphous and semicrystalline polymers. Polym. Eng. Sci. 2010, 32, 1055–1065. [Google Scholar] [CrossRef]
- Koc, P.; Tok, B. Computer-aided identification of the yield curve of a sheet metal after onset of necking. Comp. Mater. Sci. 2004, 31, 155–168. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Song, Y.; Zheng, Q. Influence of crosslinking on physical properties of low density polyethylene. Chin. J. Polym. Sci. 2012, 30, 837–844. [Google Scholar] [CrossRef]
- Celina, M.; George, G.A. Characterisation and degradation studies of peroxide and silane crosslinked polyethylene. Polym. Degrad. Stabil. 1995, 48, 297–312. [Google Scholar] [CrossRef]
- Stadler, F.J. Dynamic-mechanical behavior of polyethylenes and ethene/α-olefin-copolymers: Part II. α- and β-relaxation. Korean J. Chem. Eng. 2011, 28, 954–963. [Google Scholar] [CrossRef]
- Nitta, K.H.; Tanaka, A. Dynamic mechanical properties of metallocene catalyzed linear polyethylenes. Polymer 2001, 42, 1219–1226. [Google Scholar] [CrossRef]
- Wang, Z.; Marcolongo, P.; Lemberg, J.A.; Panganiban, B.; Evans, J.W.; Ritchie, R.O.; Wright, P.K. Mechanical fatigue as a mechanism of water tree propagation in TR-XLPE. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Crine, J.P. Electrical, chemical and mechanical processes in water treeing. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 681–694. [Google Scholar] [CrossRef]
- Minnema, L.; Barneveld, H.A.; Rinkel, P.D. An investigation into the mechanism of water treeing in polyethylene high-voltage cables. IEEE Trans. Dielectr. Electr. Insul. 1980, 15, 461–472. [Google Scholar] [CrossRef]
- Fan, Z.H.; Yoshimura, N.; Yanagiwara, M. The research on microstructure of water trees in polyethylene. In Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials, Brisbane, Australia, 3–8 July 1994; pp. 440–443. [Google Scholar]
- Men, Y.F.; Rieger, J.; Enderle, H.F.; Lilge, D. The mobility of the amorphous phase in polyethylene as a determining factor for slow crack growth. Eur. Phys. J. E 2004, 15, 421–425. [Google Scholar] [CrossRef] [PubMed]
Samples | Elongation (%) | Gel Content (%) |
---|---|---|
XLPE-0 wt % BP | Broken | 0 |
XLPE-1 wt % BP | 100 | 70 |
XLPE-2 wt % BP | 40 | 85 |
XLPE-3 wt % BP | 10 | 94 |
Samples | Elastic Modulus (MPa) | Breaking Stress (MPa) | Breaking Elongation (%) | Strain Hardening Index |
---|---|---|---|---|
XLPE-0 wt % BP | 569.2 | 105.1 | 248 | 6.22 |
XLPE-1 wt % BP | 459.9 | 117.9 | 249 | 6.29 |
XLPE-2 wt % BP | 234.5 | 308.1 | 209 | 6.60 |
XLPE-3 wt % BP | 196.1 | 277.7 | 200 | 6.64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; Chen, J.; Zhao, H.; Sun, W.; Chen, Y.; Luo, Z. Dynamic Thermomechanical Analysis on Water Tree Resistance of Crosslinked Polyethylene. Materials 2019, 12, 746. https://doi.org/10.3390/ma12050746
Sun K, Chen J, Zhao H, Sun W, Chen Y, Luo Z. Dynamic Thermomechanical Analysis on Water Tree Resistance of Crosslinked Polyethylene. Materials. 2019; 12(5):746. https://doi.org/10.3390/ma12050746
Chicago/Turabian StyleSun, Kun, Junqi Chen, Hong Zhao, Weifeng Sun, Yinsheng Chen, and Zhongming Luo. 2019. "Dynamic Thermomechanical Analysis on Water Tree Resistance of Crosslinked Polyethylene" Materials 12, no. 5: 746. https://doi.org/10.3390/ma12050746