# Reverse Problem in Surface Texture Analysis—One-Process Profile Modeling on the Basis of Measured Two-Process Profile after Machining or Wear

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Formulation of the Problem

## 3. Solution of the Problem

- -
- Determination of the probability plot of the two-process measured profile;
- -
- Determination of the Pq parameter of the one-process profile which is the Pvq parameter of the two-process profile;
- -
- Vertical truncation of the two-process profile to extract profile details belonging only to the valley portion;
- -
- Determinations of the autocorrelation function and correlation length of the truncated two-process profile;
- -
- Calculation of the magnification factor MF (Figure 4b) based on the material ratio of the truncation level;
- -
- Calculation of the correlation length of the one-process valley profile by magnification of the correlation length of the truncated two-process profile by the MF value;
- -
- Simulation of the base (valley) profile using for example the FFT method [17].

## 4. Validation of Method

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Grabon, W.; Pawlus, P.; Wos, S.; Koszela, W.; Wieczorowski, M. Effects of honed cylinder liner surface texture on tribological properties of piston ring-liner assembly in short time tests. Tribol. Int.
**2017**, 113, 137–148. [Google Scholar] [CrossRef] - Haasis, G.; Weigmann, U. New honing technique reduces oil consumption. Ind. Diam. Rev.
**1999**, 3, 205–211. [Google Scholar] - Mezghani, S.; Demirci, I.; Zahouani, H.; El Mansori, M. The effect of groove texture patterns on piston-ring pack friction. Precis. Eng.
**2012**, 36, 210–217. [Google Scholar] [CrossRef] [Green Version] - Anderberg, C.; Dimkovski, Z.; Rosén, B.G.; Thomas, T.R. Low friction and emission cylinder liner surfaces and the influence of surface topography and scale. Tribol. Int.
**2019**, 133, 224–229. [Google Scholar] [CrossRef] - Gachot, C.; Rosenkranz, A.; Hsu, S.M.; Costa, H.L. A critical assessment of surface texturing for friction and wear improvement. Wear
**2017**, 372–373, 21–41. [Google Scholar] [CrossRef] - Rosenkranz, A.; Grützmacher, P.G.; Gachot, C.; Costa, H.L. Surface Texturing in Machine Elements: A Critical Discussion for Rolling and Sliding Contacts. Adv. Eng. Mater.
**2019**, 21, 1900194. [Google Scholar] [CrossRef] - Koszela, W.; Dzierwa, A.; Galda, L.; Pawlus, P. Experimental investigation of oil pockets effect on abrasive wear resistance. Tribol. Int.
**2012**, 46, 145–153. [Google Scholar] [CrossRef] - Galda, L.; Dzierwa, A.; Sep, J.; Pawlus, P. The effect of oil pockets shape and distribution on seizure resistance in lubricated sliding. Tribol. Lett.
**2010**, 37, 301–311. [Google Scholar] [CrossRef] - Koszela, W.; Pawlus, P.; Reizer, R.; Liskiewicz, T. The combined effect of surface texturing and DLC coating on the functional properties of internal combustion engines. Tribol. Int.
**2018**, 127, 470–477. [Google Scholar] [CrossRef] - Mishra, P.; Ramkumar, P. Effect of additives on a surface textured piston ring–cylinder liner system. Tribol.-Mater. Surf. Interfaces
**2019**, 13, 67–75. [Google Scholar] [CrossRef] - Whitehouse, D.J.; Archard, J.F. The properties of random surface of significance in their contact. Proc. R. Soc. (Lond.)
**1970**, A316, 97–121. [Google Scholar] [CrossRef] [Green Version] - Whitehouse, D.J. Handbook of Surface Metrology; Inst. of Physics: Philadelphia, PA, USA, 1994. [Google Scholar]
- Greenwood, J.A.; Williamson, J.B.P. Contact of nominally flat surfaces. Proc. R. Soc. (Lond.)
**1966**, A295, 300–319. [Google Scholar] - Pawlus, P.; Zelasko, W. The importance of sampling interval for rough contact mechanics. Wear
**2012**, 276, 121–129. [Google Scholar] [CrossRef] - An, B.; Wang, X.; Xu, Y.; Jackson, R.L. Deterministic elastic-plastic modelling of rough surface contact including spectral interpolation and comparison to theoretical models. Tribol. Int.
**2019**, 135, 246–258. [Google Scholar] [CrossRef] - Teja, S.R.; Jayasingh, T. Characterisation of ground surface profiles: A comparison of AR, MA and ARMA modelling methods. Int. J. Mach. Tools Manuf.
**1993**, 33, 103–109. [Google Scholar] [CrossRef] - Wu, J.J. Simulation of rough surfaces with FFT. Tribol. Int.
**2000**, 33, 47–58. [Google Scholar] [CrossRef] - ISO 13565-1—Geometrical Product Specifications (GPS)—Surface Texture: Profile METHOD; SURFACES HAVING Stratified Functional Properties—Part 1: Filtering and General Measurement Conditions; International Organization for Standardization: Geneva, Switzerland, 1996.
- Li, H.; Jiang, X.; Li, Z. Robust estimation in Gaussian filtering for engineering surface characterization. Precis. Eng.
**2004**, 28, 186–193. [Google Scholar] [CrossRef] - ISO 13565-2—Geometrical Product Specifications (GPS)—Surface Texture: Profile method; Surfaces having Stratified Functional Properties—Part 2: Height Characterization Using the Linear Material Ratio Curve; International Organization for Standardization: Geneva, Switzerland, 1996.
- Bohm, H.J. Parameters for evaluating the wearing behaviour of surfaces. Int. J. Mach. Tools Manuf.
**1992**, 32, 109–113. [Google Scholar] [CrossRef] - Schneider, U.; Steckroth, A.; Rau, N.; Hubner, G. An approach to the evaluation of surface profiles by separating them into functionally different parts. Surf. Topogr.
**1988**, 1, 71–83. [Google Scholar] - ISO 13565-3—Geometrical Product Specifications (GPS)—Surface Texture: Profile Method; Surfaces Having Stratified Functional Properties—Part 3: Height Characterization Using the Material Probability Curve; International Organization for Standardization: Geneva, Switzerland, 1998.
- Malburg, M.C.; Raja, J. Characterization of surface texture generated by plateau-honing process. CIRP Ann.
**1993**, 42, 637–639. [Google Scholar] [CrossRef] - Whitehouse, D.J. Assessment of surface finish profiles produced by multiprocess manufacture. Proc. Inst. Mech. Eng.
**1985**, 199, 263–270. [Google Scholar] [CrossRef] - Pawlus, P. Simulation of stratified surface topographies. Wear
**2008**, 264, 457–463. [Google Scholar] [CrossRef] - Pérez-Rafols, F.; Almqvist, A. Generating randomly rough surfaces with given height probability distribution and power spectrum. Tribol. Int.
**2019**, 131, 591–604. [Google Scholar] [CrossRef] - Reizer, R.; Pawlus, P. Modeling of plateau honed surface topography. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
**2012**, 226, 1564–1578. [Google Scholar] [CrossRef] - Hu, S.; Brunetiere, N.; Huang, W.; Liu, X.; Wang, Y. Bi-Gaussian surface identification and reconstruction with revised autocorrelation functions. Tribol. Int.
**2017**, 110, 185–194. [Google Scholar] [CrossRef] - Kishawy, H.A.; Hegab, H.; Umer, U.; Mohany, A. Application of acoustic emissions in machining processes: Analysis and critical review. Int. J. Adv. Manuf. Technol.
**2018**, 98, 1391–1407. [Google Scholar] [CrossRef] - Zhu, L.; Yang, Z.; Li, Z. Investigation of mechanics and machinability of titanium alloy thin-walled parts by CBN grinding head. Int. J. Adv. Manuf. Technol.
**2019**, 100, 2537–2555. [Google Scholar] [CrossRef] - Zhao, B.; Ding, W.; Chen, Z.; Ya, C. Processes Pore structure design and grinding performance of porous metal-bonded CBN abrasive wheels fabricated by vacuum sintering. J. Manuf. Process.
**2019**, 44, 125–132. [Google Scholar] [CrossRef] - Meng, B.; Yuan, D.; Xu, S. Coupling effect on the removal mechanism and surface/subsurface characteristics of SiC during grinding process at the nanoscale. Ceram. Int.
**2019**, 45, 2483–2491. [Google Scholar] [CrossRef] - Krolczyk, G.M.; Maruda, R.W.; Krolczyk, J.B.; Wojciechowski, S.; Mia, M.; Nieslony, P.; Budzik, G. Ecological trends in machining as a key factor in sustainable production: A review. J. Clean Prod.
**2019**, 218, 601–615. [Google Scholar] [CrossRef] - Pawlus, P.; Chetwynd, D.G. Efficient characterization of surface topography in cylinder bores. Precis. Eng.
**1996**, 19, 164–174. [Google Scholar] [CrossRef] - King, T.G.; Spedding, T.A. On the relationship between surface profile height parameters. Wear
**1982**, 83, 91–108. [Google Scholar] [CrossRef] - Pawlus, P.; Dzierwa, A.; Michalski, J.; Reizer, R.; Wieczorowski, M.; Majchrowski, R. The effect of selected parameters of the honing process on cylinder liner surface topography. Surf. Topogr.-Metrol. Prop.
**2014**, 2, 025004. [Google Scholar] [CrossRef] - Pawlus, P. Digitisation of surface topography measurement results. Measurement
**2007**, 40, 672–686. [Google Scholar] [CrossRef] - Krzyzak, Z.; Pawlus, P. ‘Zero-wear’of piston skirt surface topography. Wear
**2006**, 260, 554–561. [Google Scholar] [CrossRef]

**Figure 3.**Computer creation of the two-process profile: plateau profile (

**a**), valley profile (

**b**), and two-process profile (

**c**).

**Figure 4.**Correlation length (CL) of the truncated one-process profile after honing (

**a**), and magnification factor (MF) (

**b**) versus material ratio.

**Figure 5.**Two-process cylinder profile (

**a**), its probability plot (

**b**), and the truncated profile containing the valley part (

**c**).

**Figure 8.**One-process cylinder liner profile after finish honing (

**a**), after tribological test (

**b**), and simulated one-process profile (

**c**).

**Figure 9.**One-process cylinder liner profile after finish honing (

**a**), after plateau honing (

**b**), and the simulated one-process profile (

**c**).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pawlus, P.; Reizer, R.; Wieczorowski, M.
Reverse Problem in Surface Texture Analysis—One-Process Profile Modeling on the Basis of Measured Two-Process Profile after Machining or Wear. *Materials* **2019**, *12*, 4169.
https://doi.org/10.3390/ma12244169

**AMA Style**

Pawlus P, Reizer R, Wieczorowski M.
Reverse Problem in Surface Texture Analysis—One-Process Profile Modeling on the Basis of Measured Two-Process Profile after Machining or Wear. *Materials*. 2019; 12(24):4169.
https://doi.org/10.3390/ma12244169

**Chicago/Turabian Style**

Pawlus, Pawel, Rafal Reizer, and Michal Wieczorowski.
2019. "Reverse Problem in Surface Texture Analysis—One-Process Profile Modeling on the Basis of Measured Two-Process Profile after Machining or Wear" *Materials* 12, no. 24: 4169.
https://doi.org/10.3390/ma12244169