Preparation of Porous Ceramsite with Ammonium Acetate as Low-Temperature Decomposition Foaming Agent and Its Sound Absorption Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Raw Materials
2.2. Determination of Thermal Decomposition Mechanism of Ammonium Acetate and Heat-Treatment Temperature of Ceramsite
2.3. Preparation of Ceramsite
2.4. Pore Structure Characterization and Properties Evaluation
3. Results and Discussions
3.1. TG-DSC Thermal Analysis
3.2. Apparent Porosity
3.3. Microstructure of the Obtained Ceramsite
3.3.1. Effect of Foaming Agent Concentration on the Micromorphology of the Ceramsite
3.3.2. Effect of Heating Rate on Microstructure of the Ceramsite
3.4. XRD Analysis
3.5. Sound Absorption Performance
3.5.1. Effect of Foaming Agent Concentration on Sound Absorption Performance
3.5.2. Effect of Heating Rate on Sound Absorption Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, X.; Zhai, W.; Chen, Z.; Yang, J. Characteristic and mechanism of structural acoustic radiation for box girder bridge in urban rail transit. Sci. Total. Environ. 2018, 627, 1303–1314. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.Q.; Zhang, T.; Pan, R.J.; Chun, Y.Y.; Zhou, H.M.; Zhu, W.; Peng, H.Z.; Zhang, Q. Sintering-free preparation of porous ceramsite using low-temperature decomposing pore former and its sound-absorbing performance. Constr. Build. Mater. 2018, 171, 367–376. [Google Scholar] [CrossRef]
- Huang, H.S.; Wu, H.Q.; Zhang, T.; Xie, X.J.; Pan, R.J.; Zhou, H.M.; Zhu, W.X.; Peng, H.Z. Preparation of porous sound-absorbing ceramsite and controllable pore structure. J. Guangxi Univ. (Nat. Sci. Ed.) 2018, 6, 2292–2302. (In Chinese) [Google Scholar]
- Zhu, W.X.; Feng, L.; Zhou, H.M.; Qin, Y.C.; Luan, H.X. Optimization and field actual measurement analysis of high performances metro rail sound-absorbing panels. New Build. Mater. 2016, 12, 107–111. (In Chinese) [Google Scholar]
- Arenas, C.; Leiva, C.; Vilches, L.F.; Cifuentes, H.; Rodríguez-Galán, M. Technical specifications for highway noise barriers made of coal bottom ash-based sound absorbing concrete. Constr. Build. Mater. 2015, 95, 585–591. [Google Scholar] [CrossRef]
- Li, L.; Zhu, W.X.; Meng, Q.P. Effect of ceramsite raw materials and grades on cement-based ceramsite orbital sound absorbing panels. Railw. Eng. 2016, 8, 157–159. (In Chinese) [Google Scholar]
- Cao, L.; Fu, Q.; Si, Y.; Ding, B.; Yu, J. Porous materials for sound absorption. Compos. Commun. 2018, 10, 25–35. [Google Scholar] [CrossRef]
- Zhai, W.; Yu, X.; Song, X.; Ang, L.Y.L.; Cui, F.; Lee, H.P.; Li, T. Microstructure-based experimental and numerical investigations on the sound absorption property of open-cell metallic foams manufactured by a template replication technique. Mater. Des. 2018, 137, 108–116. [Google Scholar] [CrossRef]
- Wang, F.; Gu, H.; Yin, J.; Xia, Y.; Zuo, K.; Liang, H.; Ning, C.; Yao, D.; Zeng, Y. Porous Si3N4 fabrication via volume-controlled foaming and their sound absorption properties. J. Alloys Compd. 2017, 727, 163–167. [Google Scholar] [CrossRef]
- Chen, Y. Preparation and Characterization of Porous Materials; China University of Science and Technology Press: Hefei, China, 2010; pp. 220–221. (In Chinese) [Google Scholar]
- Liu, P.Y. Introduction to Porous Materials, 2nd ed.; Tsinghua University Press: Beijing, China, 2012; pp. 223–225. (In Chinese) [Google Scholar]
- Mao, X.J.; Wang, S.W.; Shimai, S.Z. Porous ceramics with tri-modal pores prepared by foaming and starch consolidation. Ceram. Int. 2008, 34, 107–112. [Google Scholar] [CrossRef]
- Sepulveda, P.; Binner, J.G.P. Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers. J. Eur. Ceram. Soc. 1999, 19, 2059–2066. [Google Scholar] [CrossRef] [Green Version]
- Fuji, M.; Kato, T.; Zhang, F.; Takahashi, M. Effects of surfactants on the microstructure and some intrinsic properties of porous building ceramics fabricated by gelcasting. Ceram. Int. 2006, 32, 797–802. [Google Scholar] [CrossRef]
- Fernandes, H.R.; Tulyaganov, D.U.; Ferreira, J.M.F. Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents. Ceram. Int. 2009, 35, 229–235. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, C.; Zhang, L.; Zhu, B.; Li, Y. Application of foaming agent in the foam glass. Bull. Chin. Ceram. Soc. 2017, 7, 2293–2300. (In Chinese) [Google Scholar]
- Shui, A.; Xi, X.; Wang, Y.; Cheng, X. Effect of silicon carbide additive on microstructure and properties of porcelain ceramics. Ceram. Int. 2011, 37, 1557–1562. [Google Scholar] [CrossRef]
- Petlitckaia, S.; Poulesquen, A. Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide. Ceram. Int. 2019, 45, 1322–1330. [Google Scholar] [CrossRef]
- Ducman, V.; Korat, L. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater. Charact. 2016, 113, 207–213. [Google Scholar] [CrossRef]
- Gregorová, E.; Pabst, W.; Živcová, Z.; Sedlářová, I.; Holíková, S. Porous alumina ceramics prepared with wheat flour. J. Eur. Ceram. Soc. 2010, 30, 2871–2880. [Google Scholar] [CrossRef]
- Standardization Administration of China. Methods for Chemical Analysis of Cement. Part 1: Analysis by Wet Chemistry; GB/T 176-2017; Standardization Administration of China: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Standardization Administration of China. Test Method for Properties of Porous Ceramics: Test Method for Apparent Porosity and Bulk Density of Porous Ceramic; GB/T 1966-1996; Standardization Administration of China: Beijing, China, 1996. (In Chinese) [Google Scholar]
- Diamond, S. Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials. Cement. Concrete. Res. 2000, 30, 1517–1525. [Google Scholar] [CrossRef]
- Standardization Administration of China. The Measurement of the Sound Absorption Coefficient and Acoustic Impedance in the Acoustic Impedance Tube; GB/T 18696.2-2002; Standardization Administration of China: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Standardization Administration of China. Lightweight Aggregates and its Test Methods. Part 2: Test Methods for Lightweight Aggregates; GB/T 17431.2; Standardization Administration of China: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Cantero, B.; del Bosque, I.S.; Matías, A.; Medina, C. Statistically significant effects of mixed recycled aggregate on the physical-mechanical properties of structural concretes. Constr. Build. Mater. 2018, 185, 93–101. [Google Scholar] [CrossRef]
- Properties of Ammonium Acetate. Available online: https://www.sigmaaldrich.com/catalog/search?term=ammonium+acetate&interface=All_ZH&N=0&mode=match%20partialmax&lang=zh®ion=CN&focus=product (accessed on 14 November 2019).
- Alarcon-Ruiz, L.; Platret, G.; Massieu, E.; Ehrlacher, A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cement. Concrete. Res. 2005, 35, 609–613. [Google Scholar] [CrossRef]
- Song, H.; Jeong, Y.; Bae, S.; Jun, Y.; Yoon, S.; Oh, J.E. A study of thermal decomposition of phases in cementitious systems using HT-XRD and TG. Constr. Build. Mater. 2018, 169, 648–661. [Google Scholar] [CrossRef]
- Hu, S.G. Advanced Cement-Based Composites; Science Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Sang, G.; Zhu, Y.; Yang, G.; Zhang, H. Preparation and characterization of high porosity cement-based foam material. Constr. Build. Mater. 2015, 91, 133–137. [Google Scholar] [CrossRef]
- Povstenko, Y.Z. Generalizations of laplace and young equations involving couples. J. Colloid Interface Sci. 1991, 144, 497–506. [Google Scholar] [CrossRef]
- Xu, F.; Gu, G.; Zhang, W.; Wang, H.; Huang, X.; Zhu, J. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method. Ceram. Int. 2018, 44, 19989–19997. [Google Scholar] [CrossRef]
- Hernández-Baltazar, E.; Gracia-Fadrique, J. Elliptic solution to the Young–Laplace differential equation. J. Colloid Interface Sci. 2005, 287, 213–216. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer: Chemistry and Applications, 2nd ed.; Geopolymer Institute: St. Quentin, France, 2008. [Google Scholar]
- Lobo, A.Q.; Ferreira, A.G.M. Phase equilibria from the exactly integrated Claperron equation. J. Chem. Thermodyn. 2001, 33, 1597–1617. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ji, Y.; Huang, G.; Li, J.; Hu, Y. Modification and enhancement of mechanical properties of dehydrated cement paste using ground granulated blast-furnace slag. Constr. Build. Mater. 2018, 164, 525–534. [Google Scholar] [CrossRef]
- Tian, H.; Ma, Q. Effects of heating rate on the structure and properties of SiOC ceramic foams derived from silicone resin. Ceram. Int. 2012, 38, 2101–2104. [Google Scholar] [CrossRef]
- Bahafid, S.; Ghabezloo, S.; Duc, M.; Faure, P.; Sulem, J. Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density. Cem. Concr. Res. 2017, 95, 270–281. [Google Scholar] [CrossRef]
- Yavas, B.; Sahin, F.; Yucel, O.; Goller, G. Effect of particle size, heating rate and CNT addition on densification, microstructure and mechanical properties of B4C ceramics. Ceram. Int. 2015, 41, 8936–8944. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structures and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Wen, J. Study on the Technology of Baking Free Fly Ash Ceramsite. Master’s Thesis, Chang’an University, Xi’an, China, 2004. (In Chinese). [Google Scholar]
- Zhang, H.; Li, L.; Wang, W. Effects of temperature rising inhibitor on nucleation and growth process of ettringite. J. Solid State Chem. 2019, 274, 222–228. [Google Scholar] [CrossRef]
- Rodriguez, E.T.; Garbev, K.; Merz, D.; Black, L.; Richardson, I.G. Thermal stability of C-S-H phases and applicability of Richardson and Groves’ and Richardson C-(A)-S-H(I) models to synthetic C-S-H. Cement. Concrete. Res. 2017, 93, 45–56. [Google Scholar] [CrossRef]
- Bardakhanov, S.P.; Lee, C.M.; Goverdovskiy, V.N.; Zavjalov, A.P.; Zobov, K.V.; Chen, M.; Xu, Z.H.; Chakin, I.K.; Trufanov, D.Y. Hybrid sound-absorbing foam materials with nanostructured grit-impregnated pores. Appl. Acoust. 2018, 139, 69–74. [Google Scholar] [CrossRef]
- Sung, G.; Kim, J.W.; Kim, J.H. Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption. J. Ind. Eng. Chem. 2016, 44, 99–104. [Google Scholar] [CrossRef]
- Park, J.H.; Minn, K.S.; Lee, H.R.; Yang, S.H.; Yu, C.B.; Pak, S.Y.; Oh, C.S.; Song, Y.S.; Kang, Y.J.; Youn, J.R. Cell openness manipulation of low density polyurethane foam for efficient sound absorption. J. Sound. Vib. 2017, 406, 224–236. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, M.; Wu, H.; Guo, S.; Sun, X.; Liang, W. Preparation of a new foam/film structure poly (ethylene-co-octene) foam materials and its sound absorption properties. Mater. Lett. 2015, 139, 275–278. [Google Scholar] [CrossRef]
Component | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | TiO2 | K2O | Na2O | LOI |
---|---|---|---|---|---|---|---|---|---|---|
Proportion (wt.%) | 57.8 | 26.5 | 5.8 | 4.1 | 1.7 | 0.6 | 0.3 | 0.8 | 0.2 | 2.2 |
Source of Variation | Type III Sum of Squares | Df | Mean Squares | F | p-Value |
---|---|---|---|---|---|
Corrected model | 1394.569 a | 34 | 41.017 | 92.475 | 0.00 (5.8382 × 10−80) |
Intercept | 97794.425 | 1 | 97794.425 | 220484.157 | 0.00 (1.0034 × 10−225) |
heating rate | 581.440 | 6 | 96.907 | 218.483 | 0.00 (1.7185 × 10−68) |
foaming agent concentration | 624.861 | 4 | 156.215 | 352.198 | 0.00 (5.4974 × 10−72) |
Interaction between heating rate and foaming agent concentration | 188.268 | 24 | 7.845 | 17.686 | 0.00 (2.2857 × 10−31) |
Error | 62.096 | 140 | 0.444 | ||
Total | 99251.090 | 175 | |||
Corrected total | 1456.666 | 174 |
Source of Variation | Type III Sum of Squares | Df | Mean Squares | F | p-Value |
---|---|---|---|---|---|
Corrected model | 6.526 a | 6 | 1.088 | 64.067 | 0.00 (4.6559 × 10−15) |
Intercept | 528.146 | 1 | 528.146 | 31111.877 | 0.00 (3.3763 × 10−44) |
Heating rate | 6.526 | 6 | 1.088 | 64.067 | 0.00 (4.6559 × 10−15) |
Error | 0.475 | 28 | 0.017 | ||
Total | 535.147 | 35 | |||
Corrected total | 7.001 | 34 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Huang, H.; Pan, R.; Chun, Y.; Zhu, L.; Nong, K. Preparation of Porous Ceramsite with Ammonium Acetate as Low-Temperature Decomposition Foaming Agent and Its Sound Absorption Performance. Materials 2019, 12, 4124. https://doi.org/10.3390/ma12244124
Wu H, Huang H, Pan R, Chun Y, Zhu L, Nong K. Preparation of Porous Ceramsite with Ammonium Acetate as Low-Temperature Decomposition Foaming Agent and Its Sound Absorption Performance. Materials. 2019; 12(24):4124. https://doi.org/10.3390/ma12244124
Chicago/Turabian StyleWu, Huiqin, Huansheng Huang, Rongjun Pan, Yeyang Chun, Ling Zhu, and Kailun Nong. 2019. "Preparation of Porous Ceramsite with Ammonium Acetate as Low-Temperature Decomposition Foaming Agent and Its Sound Absorption Performance" Materials 12, no. 24: 4124. https://doi.org/10.3390/ma12244124
APA StyleWu, H., Huang, H., Pan, R., Chun, Y., Zhu, L., & Nong, K. (2019). Preparation of Porous Ceramsite with Ammonium Acetate as Low-Temperature Decomposition Foaming Agent and Its Sound Absorption Performance. Materials, 12(24), 4124. https://doi.org/10.3390/ma12244124