In Situ Synchrotron Diffraction Analysis of Zn Additions on the Compression Properties of NK30
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Metallography
3.2. In Situ Compression Experiments
3.3. EBSD Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pekguleryuz, M.; Kainer, K.; Kaya, A. Fundamentals of Magnesium Alloy Metallurgy; Woodhead: Philadelphia, PA, USA, 2013. [Google Scholar]
- Avedesian, M.M.; Baker, H. Magnesium and Magnesium Alloys. In ASM Speciality Handbook; ASM International: Cleveland, OH, USA, 1999. [Google Scholar]
- Feyerabend, F.; Fischer, J.; Holtz, J.; Witte, F.; Willumeit, R.; Drücker, H.; Vogt, C.; Hort, N. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater. 2010, 6, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- He, S.M.; Peng, L.M.; Zeng, X.Q.; Ding, W.J.; Zhu, Y.P. Comparison of the microstructure and mechanical properties of a ZK60 alloy with and without 1.3 wt.% gadolinium addition. Mater. Sci. Eng. A 2006, 433, 175–181. [Google Scholar] [CrossRef]
- Stanford, N.; Atwell, D.; Beerb, A.; Davies, C.; Barnett, M.R. Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scripta. Mater. 2008, 59, 771–775. [Google Scholar] [CrossRef]
- Langelier, B.; Nasiri, A.M.; Lee, S.Y.; Gharghouri, M.A.; Esmaeili, S. Improving microstructure and ductility in the Mg–Zn alloy system by combinational Ce–Ca microalloying. Mat. Sci. Eng. A 2015, 620, 76–84. [Google Scholar] [CrossRef]
- Leontis, T.E. The properties of sand cast magnesium-rare earth alloys. JOM 1949, 185, 968–983. [Google Scholar] [CrossRef]
- Rokhlin, L.L. Magnesium Alloys Containing Rare Earth Metals; Taylor&Francis: London, UK, 2003; ISBN 0-415-28414-7. [Google Scholar]
- Fu, P.H.; Peng, L.M.; Jiang, H.Y.; Chang, J.W.; Zhai, C.Q. Effects of heat treatments on the microstructures and mechanical properties of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy. Mat. Sci. Eng. A 2008, 486, 183–192. [Google Scholar] [CrossRef]
- Wu, D.; Chen, R.S.; Ke, W. Microstructure and mechanical properties of a sand-cast Mg–Nd–Zn alloy. Mater. Des. 2014, 58, 324–331. [Google Scholar] [CrossRef]
- Ma, L.; Mishra, R.K.; Balogh, M.P.; Peng, L.; Luo, A.; Sachdev, A.K.; Ding, W. Effect of Zn on the microstructure evolution of extruded Mg–3Nd (–Zn)–Zr (wt.%) alloys. Mat. Sci. Eng. A 2012, 543, 12–21. [Google Scholar] [CrossRef]
- Easton, M.A.; Gibson, M.A.; Qiu, D.; Zhu, S.M.; Gröbner, J.; Schmid-Fetzer, R.; Nie, J.F.; Zhang, M.X. The role of Crystallography and Thermodynamics on Phase Selection in Binary Magnesium-Rare Earth (Ce or Nd) Alloys. Acta Mater. 2012, 60, 4420–4430. [Google Scholar] [CrossRef]
- Tolnai, D.; Subroto, T.; Gavras, S.; Buzolin, R.; Stark, A.; Schell, N.; Hort, N. Phase Formation during Solidification of Mg-Nd-Zn Alloys: An In Situ Synchrotron Radiation Diffraction Study. Materials 2018, 11, 1637. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Wang, W.; Huang, H.; Pei, J.; Qu, H.; Yuan, G.; Li, Y. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study. Acta Biomater. 2018, 69, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Lonardelli, I.; Gey, N.; Wenk, H.R.; Humbert, M.; Vogel, S.C.; Lutterotti, L. In situ observation of texture evolution during α → β and β → α phase transformations in titanium alloys investigated by neutron diffraction. Acta Mater. 2007, 55, 5718–5727. [Google Scholar] [CrossRef]
- Suwanpinij, P.; Stark, A.; Li, X.; Römer, F.; Herrmann, K.; Lippmann, T.; Bleck, W. In Situ High Energy X-Ray Diffraction for Investigating the Phase Transformation in Hot Rolled TRIP-Aided Steels. Adv. Eng. Mater. 2014, 16, 1044–1051. [Google Scholar] [CrossRef]
- Buzolin, R.H.; Tolnai, D.; Mendis, C.L.; Stark, A.; Schell, N.; Pinto, H.; Kainer, K.U.; Hort, N. In situ synchrotron radiation diffraction study of the role of Gd, Nd on the elevated temperature compression behavior of ZK40. Mat. Sci. Eng. A 2015, 640, 129–136. [Google Scholar] [CrossRef]
- Buzolin, R.H.; Mendis, C.L.; Tolnai, D.; Stark, A.; Schell, N.; Pinto, H.; Kainer, K.U.; Hort, N. In situ synchrotron radiation diffraction investigation of the compression behaviour at 350 °C of ZK40 alloys with addition of CaO and Y. Mat. Sci. Eng. A 2016, 664, 2–9. [Google Scholar] [CrossRef]
- Garcés, G.; Máthis, K.; Medina, J.; Horváth, K.; Drozdenko, D.; Oñorbe, E.; Dobroň, P.; Pérez, P.; Klaus, M.; Adeva, P. Combination of in-situ diffraction experiments and acoustic emission testing to understand the compression behavior of Mg-Y-Zn alloys containing LPSO phase under different loading conditions. Int. J. Plast. 2018, 106, 107–128. [Google Scholar] [CrossRef]
- Elsayed, F.R.; Hort, N.; Salgado Ordorica, M.A.; Kainer, K.U. Magnesium Permanent Mold Castings Optimization. Mater. Sci. Forum. 2011, 690, 65–68. [Google Scholar] [CrossRef]
- Tolnai, D.; Szakács, G.; Requena, G.; Stark, A.; Schell, N.; Kainer, K.; Hort, N. Study of the Solidification of AS Alloys Combining in situ Synchrotron Diffraction and Differential Scanning Calorimetry. Mater. Sci. Forum. 2013, 765, 286–290. [Google Scholar] [CrossRef]
- Vinogradov, A.; Máthis, K. Acoustic Emission as a Tool for Exploring Deformation Mechanisms in Magnesium and Its Alloys In Situ. JOM 2016, 68, 3057–3062. [Google Scholar] [CrossRef]
- Pomponi, E.; Vinogradov, A. A real-time approach to acoustic emission clustering. Mech. Syst. Signal Process. 2013, 40, 791–804. [Google Scholar] [CrossRef]
- Horváth, K.; Drozdenko, D.; Máthis, K.; Bohlen, J.; Dobroň, P. Deformation behavior and acoustic emission response on uniaxial compression of extruded rectangular profile of Mg-Zn-Zr alloy. J. Alloy. Compd. 2016, 680, 623–632. [Google Scholar] [CrossRef]
- Máthis, K.; Csiszár, G.; Čapek, J.; Gubicza, J.; Clausen, B.; Lukáš, P.; Vinogradov, A.; Agnew, S.R. Effect of the loading mode on the evolution of the deformation mechanisms in randomly textured magnesium polycrystals—Comparison of experimental and modeling results. Int. J. Plast. 2015, 72, 127–150. [Google Scholar] [CrossRef]
- Tolnai, D.; Mendis, C.L.; Stark, A.; Szakács, G.; Wiese, B.; Kainer, K.U.; Hort, N. In situ synchrotron diffraction of the solidification of Mg4Y3Nd. Mat. Lett. 2013, 102–103, 62–64. [Google Scholar] [CrossRef]
- Gavras, S.; Buzolin, R.H.; Subroto, T.; Stark, A.; Tolnai, D. The Effect of Zn Content on the Mechanical Properties of Mg-4Nd-xZn Alloys (x = 0, 3, 5 and 8 wt.%). Materials 2018, 11, 1103. [Google Scholar] [CrossRef] [PubMed]
Alloy (wt %) | Nd wt % (XRF) | Zn wt % (Spark Analyzer) |
---|---|---|
NK30 | 3.7 | - |
NZK300 | 3.7 | 0.48 |
NZK310 | 3.7 | 11 |
NZK320 | 3.7 | 1.9 |
Alloy (wt %) | Grain Size (μm) ± SD |
---|---|
NK30 | 57.7 ± 1.7 |
NZK300 | 55.4 ± 3.4 |
NZK310 | 49.7 ± 3.8 |
NZK320 | 49.5 ± 6.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolnai, D.; Dupont, M.-A.; Gavras, S.; Fekete-Horváth, K.; Stark, A.; Schell, N.; Máthis, K. In Situ Synchrotron Diffraction Analysis of Zn Additions on the Compression Properties of NK30. Materials 2019, 12, 3935. https://doi.org/10.3390/ma12233935
Tolnai D, Dupont M-A, Gavras S, Fekete-Horváth K, Stark A, Schell N, Máthis K. In Situ Synchrotron Diffraction Analysis of Zn Additions on the Compression Properties of NK30. Materials. 2019; 12(23):3935. https://doi.org/10.3390/ma12233935
Chicago/Turabian StyleTolnai, Domonkos, Marie-Anne Dupont, Serge Gavras, Klaudia Fekete-Horváth, Andreas Stark, Norbert Schell, and Kristián Máthis. 2019. "In Situ Synchrotron Diffraction Analysis of Zn Additions on the Compression Properties of NK30" Materials 12, no. 23: 3935. https://doi.org/10.3390/ma12233935
APA StyleTolnai, D., Dupont, M.-A., Gavras, S., Fekete-Horváth, K., Stark, A., Schell, N., & Máthis, K. (2019). In Situ Synchrotron Diffraction Analysis of Zn Additions on the Compression Properties of NK30. Materials, 12(23), 3935. https://doi.org/10.3390/ma12233935