Mortars with Crushed Lava Granulate for Repair of Damp Historical Buildings
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Design
2.2. Binders Characterization
2.3. Aggregates Testing
2.4. Methods for Testing Hardened Mortar Samples
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aubert, J.E.; Marcom, A.; Oliva, P.; Segui, P. Chequered earth construction in south-western France. J. Cult. Herit. 2015, 16, 293–298. [Google Scholar] [CrossRef]
- Aguliar, R.; Marques, R.; Boyer, K.; Martel, C.; Trujilano, F.; Boroschek, R. Investigation on the structural behaviour of archaeological heritage in Peru: Form survey to seismic assessment. Eng. Struct. 2015, 95, 94–111. [Google Scholar] [CrossRef]
- Gomes, M.I.; Goncalves, T.D.; Faria, P. Hydric behavior of earth materials and their stabilization with cement or lime: Study on repair mortars for historical rammed earth structures. J. Mater. Civ. Eng. 2016, 28, 04016041. [Google Scholar] [CrossRef]
- Ponce-Anton, G.; Arizzi, A.; Zuluaga, M.C.; Cultrone, G.; Ortega, L.A.; Mauleon, J.A. Mineralogical, textural and physical characterization to determine deterioration susceptibility of Irulegi castle lime mortars (Navarre, Spain). Materials 2019, 12, 584. [Google Scholar] [CrossRef]
- Jonaitis, B.; Antonovic, V.; Sneideris, A.; Boris, R.; Zavalis, R. Analysis of physical and mechanical properties of the mortar in the historic retaining wall of the Gediminas Castle Hill (Vilnius, Lithuania). Materials 2019, 12, 8. [Google Scholar] [CrossRef]
- Sutti, M.L.; de Aguiar, M.O.S.; Fioriti, C.F.; Christofani, M.P.H. Characterization of historical coating mortars of La Ceramo factory in Valencia. Vitr. Int. J. Archit. Technol. Sustain. 2019, 4, 59–73. [Google Scholar] [CrossRef]
- Guerra, F.L.; Lopes, W.; Cazarolli, J.C.; Lobato, M.; Masuero, A.B.; Dal Molin, D.C.C.; Bento, F.M.; Schrank, A.; Vainstein, M.H. Biodeterioration of mortar coating in historical buildings: Microclimatic characterization, material, and fungal community. Build. Environ. 2019, 155, 195–209. [Google Scholar] [CrossRef]
- Moropoulou, A.; Bakolas, A.; Anagnostopoulou, S. Composite materials in ancient structures. Cem. Concr. Compos. 2005, 27, 295–300. [Google Scholar] [CrossRef]
- Maravelaki-Kalaitzaki, P.; Bakolas, A.; Karatasios, I.; Kilikoglou, V. Hydraulic lime mortars for the restoration of historic masonry in Crete. Cem. Concr. Res. 2005, 35, 1577–1586. [Google Scholar] [CrossRef]
- Akcay, C.; Sayin, B.; Yildizlar, B. The conservation and repair of historical masonry ruins based on laboratory analyses. Constr. Build. Mater. 2017, 132, 383–394. [Google Scholar] [CrossRef]
- Tenconi, M.; Karatasios, I.; Bala’awi, F.; Kilikoglou, V. Technological and microstructural characterization of mortars and plasters from the Roman site of Qasr Azraq, in Jordan. J. Cult. Herit. 2018, 33, 100–116. [Google Scholar] [CrossRef]
- Callebaut, K.; Elsen, J.; Van Balen, K.; Viane, W. Nineteenh century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium) Natural hydraulic lime or cement? Cem. Concr. Res. 2001, 31, 397–403. [Google Scholar] [CrossRef]
- Columbu, S.; Garau, A.M.; Luglie, C. Geochemical characterisation of pozzolanic obsidian glasses used in the ancient mortars of Nora Roman theatre (Sardinia, Italy): Provenance of raw materials and historical-archaeological implications. Arch. Anthropol. Sci. 2019, 11, 2121–2150. [Google Scholar] [CrossRef]
- Papayianni, I.; Stefanidou, M. Stremgth-porosity relationships in lime-pozzolan mortars. Constr. Build. Mater. 2006, 20, 700–705. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, T. Regional energy-environmental performance and investment strategy for China’s non-ferrous metals industry: A non-radial DEA based analysis. J. Clean. Prod. 2017, 163, 187–201. [Google Scholar] [CrossRef]
- Stefanidou, M.; Assael, M.; Antoniadis, K.; Matziaroglou, G. Thermal conductivity of building materials employed in the preservation of traditional structures. Int. J. Thermophys. 2010, 31, 844–851. [Google Scholar] [CrossRef]
- Gris, E.R.; Paine, K.A.; Heath, A.; Norman, J.; Pinder, H. Compressive strength development of binary and ternary lime-pozzolan mortars. Mater. Des. 2013, 52, 514–523. [Google Scholar] [CrossRef]
- Mounir, S.; Hamid, K.A.; Maaloufa, Y. Thermal inertia for composite materials white cement-cork, cement mortar-cork, and plaster-cork. Energy Procedia 2015, 74, 991–999. [Google Scholar] [CrossRef]
- Singh, M.; Waghmare, S.; Kumar, S.V. Characterization of lime plasters used in 16th century Mughal monument. J. Archaeol. Sci. 2014, 42, 430–434. [Google Scholar] [CrossRef]
- Santos Silva, A.; Cruz, T.; Paiva, M.J.; Candeias, A.; Schiavon, N.; Mirão, J.A.P. Mineralogical and chemical characterization of historical mortars from military fortifications in Lisbon harbor (Portugal). Environ. Earth Sci. 2011, 63, 1641–1650. [Google Scholar] [CrossRef]
- Bochen, J.; Labus, M. Study on physical and chemical properties of external lime-sand plasters of some historical buildings. Constr. Build. Mater. 2013, 45, 11–19. [Google Scholar] [CrossRef]
- Mazhoud, B.; Collet, F.; Pretot, S.; Chamoin, J. Hygric and thermal properties of hemp-lime plasters. Build. Environ. 2016, 96, 206–216. [Google Scholar] [CrossRef]
- Bochen, J. Weathering effects on physical-chemical properties of external plaster mortars exposed to different environments. Constr. Build. Mater. 2015, 79, 192–206. [Google Scholar] [CrossRef]
- Borges, C.; Santos Silva, A.; Veiga, R. Durability of ancient lime mortars in humid environment. Constr. Build. Mater. 2014, 66, 606–620. [Google Scholar] [CrossRef]
- Groot, C.; van Hees, R.; Wijffels, T. Selection of plasters and renders for salt laden masonry substrates. Constr. Build. Mater. 2009, 23, 1743–1750. [Google Scholar] [CrossRef]
- Fassina, V.; Favaro, M.; Naccari, A.; Pigo, M. Evaluation of compatibility and durability of a hydraulic lime-based plaster applied on brick wall masonry of historical buildings affected by rising damp phenomena. J. Cult. Herit. 2002, 3, 45–54. [Google Scholar] [CrossRef]
- Sepulcre-Aguilar, A.; Hernández-Olivares, F. Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cem. Concr. Res. 2010, 40, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Mosquera, M.J.; Silva, B.; Prieto, B.; Ruiz-Herrera, E. Addition of cement to lime based mortars: Effect on pore structure and vapor transport. Cem. Concr. Res. 2006, 36, 1635–1642. [Google Scholar] [CrossRef]
- Faria-Rodrigues, P.; Henriques, F.M.A. Current mortars in conservation: An overview. Restor. Build. Monum. 2004, 10, 609–622. [Google Scholar]
- Torney, C.; Forester, A.M.; Szadurski, E.M. Specialist ‘restoration mortars’ for stone elements: A comparison of the physical properties of two stone repair materials. Herit. Sci. 2014, 2, 1. [Google Scholar] [CrossRef]
- Pavlíková, M.; Zemanová, L.; Pokorný, J.; Záleská, M.; Jankovský, O.; Lojka, M.; Pavlík, Z. Influence of Wood-Based Biomass Ash Admixing on the Structural, Mechanical, Hygric, and Thermal Properties of Air Lime Mortars. Materials 2019, 12, 2227. [Google Scholar] [CrossRef]
- Elert, K.; Rodriguez-Navarro, C.; Pardo, E.S.; Hansen, E.; Cazalla, O. Lime mortars for the conservation of historic buildings. Stud. Conserv. 2002, 47, 62–75. [Google Scholar] [CrossRef]
- Ventolà, L.; Vendrell, M.; Giraldez, P.; Merino, L. Traditional organic additives improve lime mortars: New old materials for restoration and building natural stone fabrics. Constr. Build. Mater. 2011, 25, 3313–3318. [Google Scholar] [CrossRef]
- Silva, B.A.; Ferreira Pinto, A.P.; Gomes, A. Natural hydraulic lime versus cement for blended lime mortars for restoration works. Constr. Build. Mater. 2015, 94, 346–360. [Google Scholar] [CrossRef]
- Moropoulou, A.; Bakolas, A.; Moundoulas, P.; Aggelakopoulou, E.; Anagnostopoulou, S. Strength development and lime reaction in mortars for repairing historic masonries. Cem. Concr. Res. 2005, 27, 289–294. [Google Scholar] [CrossRef]
- Amanatidis, G. European Policies on Climate and Energy towards 2020, 2030 and 2050. Available online: http://www.europarl.europa.eu/RegData/etudes/BRIE/2019/631047/IPOL_BRI(2019)631047_EN.pdf (accessed on 18 June 2019).
- Garcia-Saez, I.; Méndez, J.; Ortiz, C.; Loncar, D.; Becerra, J.A.; Chacartegui, R. Energy and economic assessment of solar Organic Rankine Cycle for combined heat and power generation in residential applications. Renew. Energy 2019, 140, 461–476. [Google Scholar] [CrossRef]
- Intensity of Final Energy Consumption. Available online: https://www.eea.europa.eu/data-and-maps/indicators/final-energy-consumption-intensity-4/assessment-2 (accessed on 18 June 2019).
- Giosuè, C.; Pierpaoli, M.; Mobili, A.; Ruello, M.L.; Tittarelli, F. Influence of binders and lightweight aggregates on the properties of cementitious mortars: From traditional requirements to indoor air quality improvement. Materials 2017, 10, 978. [Google Scholar] [CrossRef]
- Barbero, S.; Dutto, M.; Ferrua, C.; Pereno, A. Analysis on existent thermal insulating plasters towards innovative applications: Evaluation methodology for a real cost-performance comparison. Energy Build. 2014, 77, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Panesar, D.K.; Shindman, B. The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cem. Concr. Compos. 2012, 34, 982–992. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Tran Le, A.D.; Langlet, T. Effect of the moisture and temperature on thermal properties of three bio-based materials. Constr. Build. Mater. 2016, 111, 119–127. [Google Scholar] [CrossRef]
- Ben Mansour, N.; Boudjemaa, A.; Gherabli, A.; Kareche, A.; Boudenne, A. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 2014, 81, 98–104. [Google Scholar] [CrossRef]
- Taoukil, D.; El Bouardi, A.; Ajzoul, T.; Ezbakhe, H. Effect of the incorporation of wood wool on thermos physical properties of sand mortars. KSCE J. Civ. Eng. 2012, 16, 1003–1010. [Google Scholar] [CrossRef]
- Rahim, M.; Douzane, O.; Tran Le, A.D.; Promis, G.; Langlet, T. Characterization and comparison of hygric properties of rape straw concrete and hemp concrete. Constr. Build. Mater. 2016, 102, 679–687. [Google Scholar] [CrossRef]
- Pichor, W.; Kaminski, A.; Syoldra, P.; Frac, M. Lightweight cement mortars with granulated foam glass and waste perlite addition. Adv. Civ. Eng. 2019, 2019, 1705490. [Google Scholar] [CrossRef]
- Fenoglio, E.; Fantucci, S.; Serra., V.; Carbonaro, C.; Pollo, R. Hygrothermal and environmental performance of a perlite-based insulating plaster for the energy retrofit of buildings. Energy Build. 2018, 179, 26–38. [Google Scholar] [CrossRef]
- Ibrahim, M.; Wurtz, E.; Biwole, P.H.; Achard, P.; Sallee, H. Hygrothermal performance of exterior walls covered with aerogel-based insulating rendering. Energy Build. 2014, 84, 241–251. [Google Scholar] [CrossRef]
- Glória Gomes, M.; Flores-Colen, I.; Manga, L.M.; Soares, A.; de Brito, J. The influence of moisture content on the thermal conductivity of external thermal mortars. Constr. Build. Mater. 2017, 135, 279–286. [Google Scholar] [CrossRef]
- Al Zaidi, A.K.A.; Demirel, B.; Atis, C.D. Effect of different storage methods on thermal and mechanical properties of mortar containing aerogel, fly ash and nano-silica. Constr. Build. Mater. 2019, 199, 501–507. [Google Scholar] [CrossRef]
- Tchamdjoua, W.H.J.; Grigolettoc, S.; Michelec, F.; Courardc, L.; Abidia, M.L.; Cherradia, T. An investigation on the use of coarse volcanic scoria as sand in Portland cement mortar. Case Stud. Constr. Mater. 2017, 7, 191–206. [Google Scholar] [CrossRef]
- Jackson, M.D.; Ciancio Rossetto, P.; Kosso, C.K.; Buonfiglio, M.; Marra, F. Building materials of the theatre of Marcellus, Rome. Archaeometry 2011, 53, 728–742. [Google Scholar] [CrossRef]
- Di Benedetto, C.; Graziano, S.F.; Guarino, V.; Rispoli, C.; Munzi, P.; Morra, V.; Cappelletti, P. Romans’ established skills: Mortars from D46b mausoleum, Porta Mediana necropolis, Cuma (Naples). Mediter. Archaelogy Archaom. 2018, 18, 131–146. [Google Scholar] [CrossRef]
- Marra, F.; Anzidei, M.; Benini, A.; D’Ambrosio, E.; Gaeta, M.; Ventura, G.; Cavallo, A. Petro-chemical features and source areas of volcanic aggregates used in ancient Roman maritime concretes. J. Volcanol. Geoth. Res. 2016, 328, 59–69. [Google Scholar] [CrossRef]
- Lanas, J.; Alvarez-Galindo, J.I. Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cem. Concr. Res. 2003, 33, 1867–1876. [Google Scholar] [CrossRef]
- EN 1015-3, Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table); European Committee for Standardization: Brussels, Belgium, 1999.
- EN 1015-2, Methods of Test for Mortar for Masonry—Part 2: Bulk Sampling of Mortars and Preparation of Test Mortars; European Committee for Standardization: Brussels, Belgium, 1998.
- EN 196-1, Methods of Testing Cement—Part 1: Determination of Strength; European Committee for Standardization: Brussels, Belgium, 2016.
- EN 196-6, Methods of Testing Cement—Part 6: Determination of Fineness; European Committee for Standardization: Brussels, Belgium, 2010.
- EN 933-1, Testing for Geometrical Properties of Aggregates–Part 1: Determination of Particle Size Distribution; European Committee for Standardization: Brussels, Belgium, 2012.
- EN 1097-6, Tests for Mechanical and Physical Properties of Aggregates–Part 6: Determination of Particle Density and Water Absorption; European Committee for Standardization: Brussels, Belgium, 2013.
- NF P 18-513, 2009. Pozzolanic Addition for Concrete-Metakaolin: Definitions, Specifications and Conformity Criteria, Annex A; Association Francaise de Normalisation: Paris, France, 2009.
- Záleská, M.; Pavlíková, M.; Pavlík, Z.; Jankovský, O.; Pokorný, J.; Tydlitát, V.; Svora, P.; Černý, R. Physical and chemical characterization of technogenic pozzolans for the application in blended cements. Constr. Build. Mater. 2018, 160, 106–116. [Google Scholar] [CrossRef]
- Pavlíková, M.; Zemanová, L.; Pokorný, J.; Záleská, M.; Jankovský, O.; Lojka, M.; Sedmidubský, D.; Pavlík, Z. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manag. 2018, 80, 89–100. [Google Scholar] [CrossRef]
- EN 1015-10, Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar; European Committee for Standardization: Brussels, Belgium, 1999.
- EN 1015-11, Methods of Test for Mortar for Masonry-Part 10: Determination of Flexural and Compressive Strength of Hardened Mortar; European Committee for Standardization: Brussels, Belgium, 1999.
- EN 1015-18, Methods of Test for Mortar for Masonry—Part 18: Determination of Water-Absorption Coefficient Due to Capillary Action of Hardened Mortar; European Committee for Standardization: Brussels, Belgium, 2002.
- Kumaran, M.K. Moisture diffusivity of building materials from water absorption measurements. J. Therm. Envel. Build. Sci. 1999, 22, 349–355. [Google Scholar] [CrossRef]
- Pavlík, Z.; Černý, R. Determination of moisture diffusivity as a function of both moisture and temperature. Int. J. Thermophys. 2012, 33, 1704–1714. [Google Scholar] [CrossRef]
- ISO 12572, Hygrothermal Performance of Building Materials and Products—Determination of Water Vapour Transmission Properties; International Organization for Standardization: Geneva, Switzerland, 2001.
- Záleská, M.; Pavlík, Z.; Čítek, D.; Jankovský, O.; Pavlíková, M. Eco-friendly concrete with scrap-tyre-rubber-based aggregate–Properties and thermal stability. Constr. Build. Mater. 2019, 225, 709–722. [Google Scholar] [CrossRef]
- Luo, K.; Li, J.; Lu, Z.Y.; Jiang, J.; Niu, Y.H. Effect of nano-SiO2 on early hydration of natural hydraulic lime. Constr. Build. Mater. 2019, 216, 119–127. [Google Scholar] [CrossRef]
- Lea, F.M. The Chemistry of Cement and Concrete; Edward Arnold: London, UK, 1976. [Google Scholar]
- Grilo, J.; Santos Silva, A.; Faria, P.; Gameiro, A.; Veiga, R.; Velosa, A. Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions. Constr. Build. Mater. 2014, 51, 287–294. [Google Scholar] [CrossRef]
- Raverdy, M.; Brivot, F.; Paillére, A.M.; Dron, R. Appréciation de I’Activité Pouzzolanique des Constituants Secondaires. In Proceedings of the 7th International Congress on the Chemistry of Cement, Paris, France, 30 June–4 July 1980; Volume 3, pp. 36–41. [Google Scholar]
- Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Wakizaka, Y. Alkali–silica reactivity of Japanese rocks. Eng. Geol. 2000, 56, 211–221. [Google Scholar] [CrossRef]
- Jozwiak-Niedzwiedzka, D.; Antolik, A.; Dziedzic, K.; Glinicki, M.A.; Gibas, K. Resistance of selected aggregates from igneous rocks to alkali-silica reaction: Verification. Roads Bridges Drogi I Mosty 2019, 18, 67–83. [Google Scholar] [CrossRef]
- Tapan, M. Alkali–silica reactivity of alkali volcanic rocks. Eur. J. Environ. Civ. Eng. 2014, 19, 94–108. [Google Scholar] [CrossRef]
- Garijo, L.; Azenha, M.; Ramesh, M.; Lourenço, P.B.; Ruiz, G. Stiffness evolution of natural hydraulic lime mortars at early ages measured through EMM-ARM. Constr. Build. Mater. 2019, 216, 405–415. [Google Scholar] [CrossRef]
- Pachta, V.; Triantafyllaki, S.; Stefanidou, M. Performance of lime-based mortars at elevated temperatures. Constr. Build. Mater. 2018, 189, 576–584. [Google Scholar] [CrossRef]
- Palomar, I.; Barluenga, G.; Puentes, J. Lime-cement mortars for coating with improved thermal and acoustic performance. Constr. Build. Mater. 2015, 75, 306–314. [Google Scholar] [CrossRef]
- Ramesh, A.; Ayenha, M.; Lourenço, P.B. Mechanical properties of lime-cement masonry mortars in their early ages. Mater. Struct. 2019, 52, 13. [Google Scholar] [CrossRef]
- Singhal, V.; Rai, D.C. Suitability of half-scale burnt clay bricks for shake table tests on masonry walls. J. Mater. Civ. Eng. 2014, 26, 644–657. [Google Scholar] [CrossRef]
- Veiga, M.; Velosa, A.; Magalhães, A. Evaluation of mechanical compatibility of renders to apply on old walls based on a restrained shrinkage test. Mater. Struct. 2007, 40, 1115–1126. [Google Scholar] [CrossRef]
- EN 998-1, Specification for Mortar for Masonry—Part 1: Rendering and Plastering Mortar; European Committee for Standardization: Brussels, Belgium, 2016.
- Nogueira, R.; Ferreira Pinto, A.P.; Gomes, A. Design and behaviour of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses. Cem. Concr. Compos. 2018, 89, 192–204. [Google Scholar] [CrossRef]
- Pavlíková, M.; Zemanová, L.; Záleská, M.; Pokorný, J.; Lojka, M.; Jankovský, O.; Pavlík, Z. Ternary blended binder for production of a novel type of lightweight repair mortar. Materials 2019, 12, 996. [Google Scholar] [CrossRef] [PubMed]
- Fusade, L.; Viles, H.; Wood, C.; Burns, C. The effect of wood ash on the properties and durability of lime mortar for repointing damp historic buildings. Constr. Build. Mater. 2019, 212, 500–513. [Google Scholar] [CrossRef]
- Roels, S.; Carmeliet, J.; Hens, H.; Adan, O.; Brocken, H.; Cerny, R.; Pavlik, Z.; Hall, C.; Kumaran, K.; Pel, L.; et al. Interlaboratory comparison of hygric properties of porous building materials. J. Therm. Envel. Build. Sci. 2004, 27, 307–325. [Google Scholar] [CrossRef]
- Chennouf, N.; Agoudjil, B.; Boudenne, A.; Benzarti, K.; Bouras, F. Hygrothermal characterization of a new bio-based construction material: Concrete reinforced with date palm fibers. Constr. Build. Mater. 2018, 192, 348–356. [Google Scholar] [CrossRef]
- Silva, B.A.; Ferreira Pinto, A.P.; Gomes, A. Influence of natural hydraulic lime content on the properties of aerial lime-based mortars. Constr. Build. Mater. 2014, 72, 208–218. [Google Scholar] [CrossRef]
- Bianco, N.; Calia, A.; Denotarpietro, G.; Negro, P. Hydraulic mortar and problems related to the suitability for restoration. Period. Miner. 2013, 82, 529–542. [Google Scholar] [CrossRef]
- Ochs, F.; Heidemann, W.; Mueller-Steinhagen, H. Effective thermal conductivity of moistened insulation materials as a function of temperature. Int. J. Heat Mass Transf. 2008, 51, 539–552. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Liu, Y.; Wang, D.; Ma, C.; Liu, J. Comprehensive correction of thermal conductivity of moist porous building materials with static moisture distribution and moisture transfer. Energy 2019, 176, 103–118. [Google Scholar] [CrossRef]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, 79th ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- EN 1745, Masonry and Masonry Products—Methods for Determining Thermal Properties; European Committee for Standardization: Brussels, Belgium, 2012.
- Palomar, I.; Barluenga, G. Assessment of lime-cement mortar microstructure and properties by P- and S- ultrasonic waves. Constr. Build. Mater. 2017, 139, 334–341. [Google Scholar] [CrossRef]
Mortar | Hydrated Lime | Portland Cement | Natural Hydraulic Lime | Sand Mix | Lava Granulate | Water |
---|---|---|---|---|---|---|
HL-R | 326.1 | - | - | 1303.5 | - | 391.3 |
HL-LA | 380.2 | - | - | - | 1292.6 | 437.4 |
PCHL-R | 241.9 | 241.9 | - | 1354.8 | - | 348.3 |
PCHL-LA | 272.7 | 272.7 | - | - | 1309.1 | 391.8 |
NHL-R | - | - | 410.0 | 1394.7 | - | 307.7 |
NHL-LA | - | - | 482.5 | - | 1385 | 386.0 |
Material | Specific Surface (m2/kg) | Loose Bulk Density (kg/m3) | Specific Density (kgm3) | d10 | d50 | d90 |
---|---|---|---|---|---|---|
(µm) | ||||||
HL | 2211 | 233 | 2210 | 0.8 | 4.2 | 50.3 |
NHL | 1090 | 671 | 2590 | 23.5 | 52.4 | 69.1 |
PC | 360 | 968 | 3129 | 6.0 | 22.8 | 32.4 |
Oxides Composition | HL | NHL | PC |
---|---|---|---|
SiO2 | 0.2 | 6.7 | 20.2 |
Al2O3 | 0.1 | 3.7 | 4.9 |
Fe2O3 | 0.1 | 2.5 | 3.4 |
TiO2 | - | 0.2 | 0.4 |
CaO | 98.7 | 84.3 | 65.3 |
MgO | 0.4 | 1.9 | 1.5 |
K2O | - | 0.5 | 0.9 |
Na2O | - | - | 0.1 |
SO3 | 0.1 | - | 3.2 |
Mineral | HL | NHL | PC |
Alite | - | - | 50.6 |
Aluminate | - | 2.7 | 3.9 |
Larnite | - | 22.5 | 4.5 |
Brownmillerite | - | 1.4 | 8.6 |
Brucite | 0.5 | - | - |
Calcite | 1.8 | 6.2 | - |
Gypsum | - | - | 3.8 |
Portlandite | 97.1 | 41.3 | - |
Amorphous phases | - | 25.1 | 28.4 |
Material | Loose Bulk Density (kg/m3) | Specific Density (kg/m3) | Pozzolanic Activity (mg Ca(OH)2/g) |
---|---|---|---|
Silica sand | 1670 | 2 647 | 21 |
Lava granulate | 1410 | 3 060 | 746 |
Substance | Silica Sand | Lava Sand |
---|---|---|
SiO2 | 98.5 | 43.2 |
Al2O3 | 0.4 | 13.5 |
Fe2O3 | 0.2 | 10.7 |
TiO2 | 0.1 | 2.6 |
CaO | - | 11.9 |
MgO | - | 8.8 |
K2O | 0.1 | 2.8 |
Na2O | - | 3.8 |
SO3 | - | 0.1 |
P2O5 | - | 0.5 |
Mineral | Silica Sand | Lava Sand |
Biotite | - | 0.8 |
Clinopyroxene | - | 17.0 |
Diopside | - | 24.8 |
Hematite | - | 5.7 |
Hornblende | - | 1.5 |
Microcline | 0.4 | - |
Leucite | - | 9.9 |
Nepheline | - | 9.7 |
Quartz | 97.9 | 1.9 |
Sanidine | 11.2 | |
Staurolite | 1.1 | - |
Amorphous phases | - | 17.1 |
Mortar | Bulk Density (kg/m3) | Matrix Density (kg/m3) | Total Open Porosity (%) | |||
---|---|---|---|---|---|---|
Curing Period (days) | ||||||
28 | 90 | 28 | 90 | 28 | 90 | |
HL-R | 1757 | 1783 | 2598 | 2611 | 32.4 | 31.7 |
HL-LA | 1672 | 1695 | 2836 | 2773 | 41.0 | 38.9 |
PCHL-R | 1815 | 1845 | 2525 | 2535 | 28.1 | 27.2 |
PCHL-LA | 1798 | 1805 | 2719 | 2697 | 33.9 | 33.1 |
NHL-R | 1781 | 1813 | 2587 | 2625 | 31.1 | 30.9 |
NHL-LA | 1716 | 1756 | 2840 | 2798 | 39.6 | 37.3 |
Curing Period (days) | ||||||||
---|---|---|---|---|---|---|---|---|
Mortar | 28 | 90 | 28 | 90 | ||||
ff (MPa) | SD | ff (MPa) | SD | fc (MPa) | SD | fc (MPa) | SD | |
HL-R | 0.5 | 0.03 | 0.9 | 0.05 | 1.7 | 0.06 | 1.9 | 0.06 |
HL-LA | 0.7 | 0.03 | 1.2 | 0.04 | 1.5 | 0.05 | 2.4 | 0.05 |
PCHL-R | 2.1 | 0.11 | 2.7 | 0.05 | 8.1 | 0.08 | 9.1 | 0.07 |
PCHL-LA | 2.5 | 0.08 | 3.0 | 0.08 | 12.2 | 0.10 | 13.9 | 0.07 |
NHL-R | 0.8 | 0.05 | 1.7 | 0.08 | 2.3 | 0.04 | 3.1 | 0.06 |
NHL-LA | 1.0 | 0.05 | 2.1 | 0.07 | 2.8 | 0.06 | 4.1 | 0.08 |
Curing Period (days) | ||||
---|---|---|---|---|
Mortar | 28 | 90 | ||
Ed | SD | Ed | SD | |
(GPa) | (GPa) | |||
HL-R | 2.7 | 0.05 | 2.9 | 0.07 |
HL-LA | 3.2 | 0.03 | 3.9 | 0.06 |
PCHL-R | 10.9 | 0.08 | 11.2 | 0.09 |
PCHL-LA | 14.4 | 0.11 | 16.2 | 0.12 |
NHL-R | 4.3 | 0.05 | 5.2 | 0.05 |
NHL-LA | 5.2 | 0.06 | 8.3 | 0.07 |
Mortar | Aw (kg/(m2∙s1/2) | wcap (kg/m3) | κapp (m2/s) | |||
---|---|---|---|---|---|---|
Curing Period (days) | ||||||
28 | 90 | 28 | 90 | 28 | 90 | |
HL-R | 0.36 | 0.34 | 249.7 | 245.0 | 2.08 × 10−6 | 1.96 × 10−6 |
HL-LA | 0.37 | 0.32 | 271.3 | 267.6 | 1.86 × 10−6 | 1.43 × 10−6 |
PCHL-R | 0.13 | 0.12 | 205.1 | 202.0 | 4.02 × 10−7 | 3.53 × 10−7 |
PCHL-LA | 0.12 | 0.10 | 264.6 | 259.2 | 2.06 × 10−7 | 1.48 × 10−7 |
NHL-R | 0.33 | 0.32 | 217.6 | 217.0 | 2.30 × 10−6 | 2.16 × 10−6 |
NHL-LA | 0.32 | 0.30 | 272.1 | 266.0 | 1.38 × 10−6 | 1.27 × 10−6 |
Dry-Cup | ||||
---|---|---|---|---|
Mortar | δ (×10−11 s) | D (×10−6 m2/s) | μ (−) | μ Difference from Reference (%) |
HL-R | 1.77 | 2.42 | 11.1 | - |
HL-LA | 1.84 | 2.51 | 10.7 | −3.6 |
PCHL-R | 0.78 | 1.07 | 25.3 | - |
PCHL-LA | 0.95 | 1.30 | 20.7 | −18.1 |
NHL-R | 1.59 | 2.17 | 12.4 | - |
NHL-LA | 1.64 | 2.25 | 12.0 | −3.2 |
Wet-Cup | ||||
HL-R | 1.87 | 2.56 | 10.5 | - |
HL-LA | 1.94 | 2.65 | 10.2 | 2.9 |
PCHL-R | 0.94 | 1.28 | 21.0 | - |
PCHL-LA | 1.03 | 1.40 | 19.2 | −8.6 |
NHL-R | 1.84 | 2.52 | 10.7 | - |
NHL-LA | 1.93 | 2.64 | 10.2 | −4.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlík, Z.; Pokorný, J.; Pavlíková, M.; Zemanová, L.; Záleská, M.; Vyšvařil, M.; Žižlavský, T. Mortars with Crushed Lava Granulate for Repair of Damp Historical Buildings. Materials 2019, 12, 3557. https://doi.org/10.3390/ma12213557
Pavlík Z, Pokorný J, Pavlíková M, Zemanová L, Záleská M, Vyšvařil M, Žižlavský T. Mortars with Crushed Lava Granulate for Repair of Damp Historical Buildings. Materials. 2019; 12(21):3557. https://doi.org/10.3390/ma12213557
Chicago/Turabian StylePavlík, Zbyšek, Jaroslav Pokorný, Milena Pavlíková, Lucie Zemanová, Martina Záleská, Martina Vyšvařil, and Tomáš Žižlavský. 2019. "Mortars with Crushed Lava Granulate for Repair of Damp Historical Buildings" Materials 12, no. 21: 3557. https://doi.org/10.3390/ma12213557