High Temperature Mechanical Response and Failure Analysis of 3D Five-Directional Braided Composites with Different Braiding Angles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.3. Characterization
3. Results and Discussion
3.1. Compression Stress–Strain Curves of Composites
3.2. Out-of-Plane Compression Strength and Modulus
3.3. The Damage and Failure Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mouritz, A.; Bannister, M.; Falzon, P.; Leong, K. Review of applications for advanced three-dimensional fiber textile composites. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1445–1461. [Google Scholar] [CrossRef]
- Tang, G.; Yan, Y.; Chen, X.; Zhang, J.; Xu, B.; Feng, Z. Dynamic damage and fracture mechanism of three-dimensional braided carbon fiber/epoxy resin composites. Mater. Des. 2001, 22, 21–25. [Google Scholar] [CrossRef]
- Li, J.; Jiao, Y.; Sun, Y.; Wei, L. Experimental investigation of cut-edge effect on mechanical properties of three-dimensional braided composites. Mater. Des. 2007, 28, 2417–2424. [Google Scholar] [CrossRef]
- Li, D.; Zhao, C.; Ge, T.; Jiang, L.; Huang, C.; Jiang, N. Experimental investigation on the compression properties and failure mechanism of 3D braided composites at room and liquid nitrogen temperature. Compos. Part B Eng. 2014, 56, 647–659. [Google Scholar] [CrossRef]
- Pan, Z.; Gu, B.; Sun, B. Experimental investigation of high-strain rate properties of 3-D braided composite material in cryogenic field. Compos. Part B Eng. 2015, 77, 379–390. [Google Scholar] [CrossRef]
- Fan, W.; Li, J.; Zheng, Y. Improved thermo-oxidative stability of three-dimensional and four-directional braided carbon fiber/epoxy hierarchical composites using graphene-reinforced gradient interface layer. Polym. Test. 2015, 44, 177–185. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, Y.; Li, J.; Limin, L.; Chen, L.; Liu, J.; Tian, S. Tensile response of carbon-aramid hybrid 3D braided composites. Mater. Des. 2017, 116, 246–252. [Google Scholar] [CrossRef]
- Zhou, H.; Li, C.; Zhang, L.; Crawford, B.; Milani, A.S.; Ko, F.K. Micro-XCT analysis of damage mechanisms in 3D circular braided composite tubes under transverse impact. Compos. Sci. Technol. 2018, 155, 91–99. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, W.; Yin, H.; Shang, Y. Progressive damage analysis of three-dimensional braided composites under flexural load by micro-CT and acoustic emission. Compos. Struct. 2019, 226, 111196. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Shi, B.; Wang, L.; Gu, B.; Sun, B. Damage and failure mechanism of 3D carbon fiber/epoxy braided composites after thermo-oxidative ageing under transverse impact compression. Compos. Part B Eng. 2019, 161, 677–690. [Google Scholar] [CrossRef]
- Li, D.; Lu, Z.; Fang, D. Longitudinal compressive behavior and failure mechanism of three-dimensional five-directional carbon/phenolic braided composites at high strain rates. Mater. Sci. Eng. A 2009, 526, 134–139. [Google Scholar] [CrossRef]
- Li, D.; Lu, Z.; Jiang, N.; Fang, D. High strain rate behavior and failure mechanism of three-dimensional five-directional carbon/phenolic braided composites under transverse compression. Compos. Part B Eng. 2011, 42, 309–317. [Google Scholar] [CrossRef]
- Gao, Y.; Li, J. Effects of braiding angle on modal experimental analysis of three-dimensional and five-directional braided composites. Compos. Part B Eng. 2012, 43, 2423–2428. [Google Scholar] [CrossRef]
- Lu, Z.; Xia, B.; Yang, Z. Investigation on the tensile properties of three-dimensional full five-directional braided composites. Comp. Mater. Sci. 2013, 77, 445–455. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, G.; Li, J. Process parameters design of a three-dimensional and five-directional braided composite joint based on finite element analysis. Mater. Des. 2013, 46, 291–300. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Singh, I.V.; Mishra, B.K. XFEM for the evaluation of elastic properties of CNT-based 3-D full five-directional braided composites. Adv. Compos. Mater. 2014, 23, 351–373. [Google Scholar] [CrossRef]
- Yan, S.; Zhao, J.; Lu, X.; Zeng, T. An experimental investigation on the low-velocity impact behavior of 3D five-directional braided composites. Polym. Adv. Technol. 2014, 25, 1386–1390. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, L.; Sun, Y.; Wang, X.; Zhang, Y.; Fu, C. Meso-scale progressive damage of 3D five-directional braided composites under transverse compression. J. Compos. Mater. 2016, 50, 3345–3361. [Google Scholar] [CrossRef]
- Hu, L.; Liu, Z.; Wang, Y.; Ou, J. Experiments and progressive damage analyses of three-dimensional full five-directional braided composites under three-point bending. Polym. Compos. 2016, 37, 2478–2493. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Lei, B.; Huang, X.; Li, X. Investigation on the bearing abilities of three-dimensional full five-directional braided composites with cut-edge. Appl. Compos. Mater. 2017, 24, 893–910. [Google Scholar] [CrossRef]
- Ouyang, Y.; Wang, H.; Gu, B.; Sun, B. Experimental study on the bending fatigue behaviors of 3D five directional braided T-shaped composites. J. Text. Inst. 2018, 109, 603–613. [Google Scholar] [CrossRef]
- Mei, H.; Jin, H.; Han, Z.; Ko, F.K. Effect of carrier configuration on the 3D four-directional and full five-directional rotary braided fabric structures. Compos. Struct. 2019, 219, 179–184. [Google Scholar] [CrossRef]
- Li, D.; Lu, Z.; Chen, L.; Li, J. Microstructure and mechanical properties of three-dimensional five-directional braided composites. Int. J. Solids Struct. 2009, 46, 3422–3432. [Google Scholar] [CrossRef]
- China Aviation Industry Corporation. Test Method for Compression of Metals at High Temperature; HB 7571-1997; China Aviation Industry Corporation: Beijing, China, 1997. [Google Scholar]
- Huang, X.; Tan, H.; Liu, L.; Zhao, Z.; Guan, Y.; Chen, W. Influence of braid angle and bearing direction on dynamic compressive properties of 3D four directional braided composites. Acta Mater. Compos. Sin. 2018, 35, 823–833. [Google Scholar]
- Kline, D.E. Dynamic mechanical properties of polymerized epoxy resins. J. Polym. Sci. 1960, 47, 237–249. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, B.; Gu, B. Experimental and numerical analyses of matrix shrinkage and compressive behavior of 3-D braided composite under thermo-oxidative ageing conditions. Compos. Struct. 2018, 204, 320–332. [Google Scholar] [CrossRef]
- Zhang, M.; Zuo, C.; Sun, B.; Gu, B. Thermal ageing degradation mechanisms on compressive behavior of 3-D braided composites in experimental and numerical study. Compos. Struct. 2016, 140, 180–191. [Google Scholar] [CrossRef]
- Wang, H.J. Compression Properties of 3D5d Braided Composites at Different Temperatures. Master’s Thesis, Tianjin Polytechnic University, Tianjin, China, 2014. [Google Scholar]
- Yang, Y.; Xian, G.; Li, H.; Sui, L. Thermal aging of an anhydride-cured epoxy resin. Polym. Degrad. Stab. 2015, 118, 111–119. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Yang, Y.; Xian, G. Flexural fatigue behavior of a pultruded basalt fiber reinforced epoxy plate subjected to elevated temperatures exposure. Polym. Compos. 2018, 39, 1731–1741. [Google Scholar] [CrossRef]
- Xuan, J.; Li, D.; Jiang, L. Fabrication, properties and failure of 3D stitched carbon/epoxy composites with no stitching fibers damage. Compos. Struct. 2019, 220, 602–607. [Google Scholar] [CrossRef]
- Veillere, A.; Heintz, J.M.; Chandra, N.; Douin, J.; Lahaye, M.; Lalet, G.; Vincent, C.; Silvain, J.F. Influence of the interface structure on the thermo-mechanical properties of Cu–X (X = Cr or B)/carbon fiber composites. Mater. Res. Bull. 2012, 47, 375–380. [Google Scholar] [CrossRef]
- Zhai, J.; Cheng, S.; Zeng, T.; Wang, Z.; Jiang, L. Thermo-mechanical behavior analysis of 3D braided composites by multiscale finite element method. Compos. Struct. 2017, 176, 664–672. [Google Scholar] [CrossRef]
- Pecora, M.; Pannier, Y.; Lafarie-Frenot, M.; Gigliotti, M.; Guigon, C. Effect of thermo-oxidation on the failure properties of an epoxy resin. Polym. Test. 2016, 52, 209–217. [Google Scholar] [CrossRef]
- Wang, J.; Potter, K.D.; Wisnom, M.R.; Hazra, K. Failure mechanisms under compression loading in composites with designed out-of-plane fibre waviness. Plast. Rubber Compos. 2013, 42, 231–238. [Google Scholar] [CrossRef]
- Elhajjar, R.F.; Shams, S.S. Compression testing of continuous fiber reinforced polymer composites with out-of-plane fiber waviness and circular notches. Polym. Test. 2014, 35, 45–55. [Google Scholar] [CrossRef]
- Feng, L.; Li, K.; Zhao, Z.; Li, H.; Zhang, L.; Lu, J.; Song, Q. Three-dimensional carbon/carbon composites with vertically aligned carbon nanotubes: Providing direct and indirect reinforcements to the pyrocarbon matrix. Mater. Des. 2016, 92, 120–128. [Google Scholar] [CrossRef]
- Zou, H.; Yin, W.; Cai, C.; Wang, B.; Liu, A.; Yang, Z.; Li, Y.; He, X. The out-of-plane compression behavior of cross-ply AS4/PEEK thermoplastic composite laminates at high strain rates. Materials 2018, 11, 2312. [Google Scholar] [CrossRef]
Sample No. | T (°C) | Braiding Angle α (°) | Fiber Volume Fraction (%) | Length (mm) | Width (mm) | Thickness (mm) | Weight (g) | Density (g·cm−3) |
---|---|---|---|---|---|---|---|---|
3B5D21-1 | 25 | 21 | 49.27% | 9.64 | 9.57 | 8.13 | 1.15 | 1.53 |
3B5D21-2 | 60 | 21 | 49.27% | 9.59 | 9.50 | 8.05 | 1.12 | 1.53 |
3B5D21-3 | 90 | 21 | 49.27% | 10.04 | 9.53 | 8.05 | 1.16 | 1.51 |
3B5D21-4 | 120 | 21 | 49.27% | 9.52 | 9.55 | 8.07 | 1.12 | 1.53 |
3B5D21-5 | 150 | 21 | 49.27% | 9.77 | 9.53 | 8.19 | 1.15 | 1.51 |
3B5D21-6 | 180 | 21 | 49.27% | 9.65 | 9.54 | 8.17 | 1.13 | 1.50 |
Mean | – | – | – | 9.70 | 9.54 | 8.11 | 1.14 | 1.52 |
S* | – | – | – | 0.19 | 0.02 | 0.06 | 0.02 | 0.01 |
3B5D32-1 | 25 | 32 | 48.84% | 9.83 | 9.55 | 8.83 | 1.19 | 1.44 |
3B5D32-2 | 60 | 32 | 48.84% | 9.62 | 9.57 | 8.91 | 1.18 | 1.44 |
3B5D32-3 | 90 | 32 | 48.84% | 9.64 | 9.52 | 8.88 | 1.17 | 1.44 |
3B5D32-4 | 120 | 32 | 48.84% | 9.65 | 9.51 | 8.89 | 1.16 | 1.42 |
3B5D32-5 | 150 | 32 | 48.84% | 9.68 | 9.57 | 8.82 | 1.19 | 1.46 |
3B5D32-6 | 180 | 32 | 48.84% | 9.55 | 9.41 | 8.87 | 1.16 | 1.46 |
Mean | – | – | – | 9.66 | 9.52 | 8.87 | 1.18 | 1.44 |
S* | – | – | – | 0.09 | 0.06 | 0.03 | 0.01 | 0.02 |
Temperature (°C) | Strength (MPa) | Modulus (GPa) | ||
---|---|---|---|---|
3B5D21 | 3B5D32 | 3B5D21 | 3B5D32 | |
25 | 305.82 | 285.94 | 3.27 | 2.94 |
60 | 301.04 | 283.21 | 2.78 | 2.62 |
90 | 283.31 | 277.34 | 2.63 | 2.49 |
120 | 260.00 | 252.07 | 2.42 | 2.23 |
150 | 240.51 | 220.98 | 2.06 | 1.84 |
180 | 221.91 | 207.56 | 1.56 | 1.51 |
Mean | 268.77 | 254.52 | 2.45 | 2.27 |
S | 33.75 | 33.67 | 0.59 | 0.53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, H.-m.; Li, D.-s.; Jiang, L. High Temperature Mechanical Response and Failure Analysis of 3D Five-Directional Braided Composites with Different Braiding Angles. Materials 2019, 12, 3506. https://doi.org/10.3390/ma12213506
Zuo H-m, Li D-s, Jiang L. High Temperature Mechanical Response and Failure Analysis of 3D Five-Directional Braided Composites with Different Braiding Angles. Materials. 2019; 12(21):3506. https://doi.org/10.3390/ma12213506
Chicago/Turabian StyleZuo, Hong-mei, Dian-sen Li, and Lei Jiang. 2019. "High Temperature Mechanical Response and Failure Analysis of 3D Five-Directional Braided Composites with Different Braiding Angles" Materials 12, no. 21: 3506. https://doi.org/10.3390/ma12213506
APA StyleZuo, H.-m., Li, D.-s., & Jiang, L. (2019). High Temperature Mechanical Response and Failure Analysis of 3D Five-Directional Braided Composites with Different Braiding Angles. Materials, 12(21), 3506. https://doi.org/10.3390/ma12213506