High Temperature Mechanical Response and Failure Analysis of 3D Five-Directional Braided Composites with Different Braiding Angles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.3. Characterization
3. Results and Discussion
3.1. Compression Stress–Strain Curves of Composites
3.2. Out-of-Plane Compression Strength and Modulus
3.3. The Damage and Failure Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mouritz, A.; Bannister, M.; Falzon, P.; Leong, K. Review of applications for advanced three-dimensional fiber textile composites. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1445–1461. [Google Scholar] [CrossRef]
- Tang, G.; Yan, Y.; Chen, X.; Zhang, J.; Xu, B.; Feng, Z. Dynamic damage and fracture mechanism of three-dimensional braided carbon fiber/epoxy resin composites. Mater. Des. 2001, 22, 21–25. [Google Scholar] [CrossRef]
- Li, J.; Jiao, Y.; Sun, Y.; Wei, L. Experimental investigation of cut-edge effect on mechanical properties of three-dimensional braided composites. Mater. Des. 2007, 28, 2417–2424. [Google Scholar] [CrossRef]
- Li, D.; Zhao, C.; Ge, T.; Jiang, L.; Huang, C.; Jiang, N. Experimental investigation on the compression properties and failure mechanism of 3D braided composites at room and liquid nitrogen temperature. Compos. Part B Eng. 2014, 56, 647–659. [Google Scholar] [CrossRef]
- Pan, Z.; Gu, B.; Sun, B. Experimental investigation of high-strain rate properties of 3-D braided composite material in cryogenic field. Compos. Part B Eng. 2015, 77, 379–390. [Google Scholar] [CrossRef]
- Fan, W.; Li, J.; Zheng, Y. Improved thermo-oxidative stability of three-dimensional and four-directional braided carbon fiber/epoxy hierarchical composites using graphene-reinforced gradient interface layer. Polym. Test. 2015, 44, 177–185. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, Y.; Li, J.; Limin, L.; Chen, L.; Liu, J.; Tian, S. Tensile response of carbon-aramid hybrid 3D braided composites. Mater. Des. 2017, 116, 246–252. [Google Scholar] [CrossRef]
- Zhou, H.; Li, C.; Zhang, L.; Crawford, B.; Milani, A.S.; Ko, F.K. Micro-XCT analysis of damage mechanisms in 3D circular braided composite tubes under transverse impact. Compos. Sci. Technol. 2018, 155, 91–99. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, W.; Yin, H.; Shang, Y. Progressive damage analysis of three-dimensional braided composites under flexural load by micro-CT and acoustic emission. Compos. Struct. 2019, 226, 111196. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Shi, B.; Wang, L.; Gu, B.; Sun, B. Damage and failure mechanism of 3D carbon fiber/epoxy braided composites after thermo-oxidative ageing under transverse impact compression. Compos. Part B Eng. 2019, 161, 677–690. [Google Scholar] [CrossRef]
- Li, D.; Lu, Z.; Fang, D. Longitudinal compressive behavior and failure mechanism of three-dimensional five-directional carbon/phenolic braided composites at high strain rates. Mater. Sci. Eng. A 2009, 526, 134–139. [Google Scholar] [CrossRef]
- Li, D.; Lu, Z.; Jiang, N.; Fang, D. High strain rate behavior and failure mechanism of three-dimensional five-directional carbon/phenolic braided composites under transverse compression. Compos. Part B Eng. 2011, 42, 309–317. [Google Scholar] [CrossRef]
- Gao, Y.; Li, J. Effects of braiding angle on modal experimental analysis of three-dimensional and five-directional braided composites. Compos. Part B Eng. 2012, 43, 2423–2428. [Google Scholar] [CrossRef]
- Lu, Z.; Xia, B.; Yang, Z. Investigation on the tensile properties of three-dimensional full five-directional braided composites. Comp. Mater. Sci. 2013, 77, 445–455. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, G.; Li, J. Process parameters design of a three-dimensional and five-directional braided composite joint based on finite element analysis. Mater. Des. 2013, 46, 291–300. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Singh, I.V.; Mishra, B.K. XFEM for the evaluation of elastic properties of CNT-based 3-D full five-directional braided composites. Adv. Compos. Mater. 2014, 23, 351–373. [Google Scholar] [CrossRef]
- Yan, S.; Zhao, J.; Lu, X.; Zeng, T. An experimental investigation on the low-velocity impact behavior of 3D five-directional braided composites. Polym. Adv. Technol. 2014, 25, 1386–1390. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, L.; Sun, Y.; Wang, X.; Zhang, Y.; Fu, C. Meso-scale progressive damage of 3D five-directional braided composites under transverse compression. J. Compos. Mater. 2016, 50, 3345–3361. [Google Scholar] [CrossRef]
- Hu, L.; Liu, Z.; Wang, Y.; Ou, J. Experiments and progressive damage analyses of three-dimensional full five-directional braided composites under three-point bending. Polym. Compos. 2016, 37, 2478–2493. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Lei, B.; Huang, X.; Li, X. Investigation on the bearing abilities of three-dimensional full five-directional braided composites with cut-edge. Appl. Compos. Mater. 2017, 24, 893–910. [Google Scholar] [CrossRef]
- Ouyang, Y.; Wang, H.; Gu, B.; Sun, B. Experimental study on the bending fatigue behaviors of 3D five directional braided T-shaped composites. J. Text. Inst. 2018, 109, 603–613. [Google Scholar] [CrossRef]
- Mei, H.; Jin, H.; Han, Z.; Ko, F.K. Effect of carrier configuration on the 3D four-directional and full five-directional rotary braided fabric structures. Compos. Struct. 2019, 219, 179–184. [Google Scholar] [CrossRef]
- Li, D.; Lu, Z.; Chen, L.; Li, J. Microstructure and mechanical properties of three-dimensional five-directional braided composites. Int. J. Solids Struct. 2009, 46, 3422–3432. [Google Scholar] [CrossRef] [Green Version]
- China Aviation Industry Corporation. Test Method for Compression of Metals at High Temperature; HB 7571-1997; China Aviation Industry Corporation: Beijing, China, 1997. [Google Scholar]
- Huang, X.; Tan, H.; Liu, L.; Zhao, Z.; Guan, Y.; Chen, W. Influence of braid angle and bearing direction on dynamic compressive properties of 3D four directional braided composites. Acta Mater. Compos. Sin. 2018, 35, 823–833. [Google Scholar]
- Kline, D.E. Dynamic mechanical properties of polymerized epoxy resins. J. Polym. Sci. 1960, 47, 237–249. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, B.; Gu, B. Experimental and numerical analyses of matrix shrinkage and compressive behavior of 3-D braided composite under thermo-oxidative ageing conditions. Compos. Struct. 2018, 204, 320–332. [Google Scholar] [CrossRef]
- Zhang, M.; Zuo, C.; Sun, B.; Gu, B. Thermal ageing degradation mechanisms on compressive behavior of 3-D braided composites in experimental and numerical study. Compos. Struct. 2016, 140, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.J. Compression Properties of 3D5d Braided Composites at Different Temperatures. Master’s Thesis, Tianjin Polytechnic University, Tianjin, China, 2014. [Google Scholar]
- Yang, Y.; Xian, G.; Li, H.; Sui, L. Thermal aging of an anhydride-cured epoxy resin. Polym. Degrad. Stab. 2015, 118, 111–119. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Yang, Y.; Xian, G. Flexural fatigue behavior of a pultruded basalt fiber reinforced epoxy plate subjected to elevated temperatures exposure. Polym. Compos. 2018, 39, 1731–1741. [Google Scholar] [CrossRef]
- Xuan, J.; Li, D.; Jiang, L. Fabrication, properties and failure of 3D stitched carbon/epoxy composites with no stitching fibers damage. Compos. Struct. 2019, 220, 602–607. [Google Scholar] [CrossRef]
- Veillere, A.; Heintz, J.M.; Chandra, N.; Douin, J.; Lahaye, M.; Lalet, G.; Vincent, C.; Silvain, J.F. Influence of the interface structure on the thermo-mechanical properties of Cu–X (X = Cr or B)/carbon fiber composites. Mater. Res. Bull. 2012, 47, 375–380. [Google Scholar] [CrossRef]
- Zhai, J.; Cheng, S.; Zeng, T.; Wang, Z.; Jiang, L. Thermo-mechanical behavior analysis of 3D braided composites by multiscale finite element method. Compos. Struct. 2017, 176, 664–672. [Google Scholar] [CrossRef]
- Pecora, M.; Pannier, Y.; Lafarie-Frenot, M.; Gigliotti, M.; Guigon, C. Effect of thermo-oxidation on the failure properties of an epoxy resin. Polym. Test. 2016, 52, 209–217. [Google Scholar] [CrossRef]
- Wang, J.; Potter, K.D.; Wisnom, M.R.; Hazra, K. Failure mechanisms under compression loading in composites with designed out-of-plane fibre waviness. Plast. Rubber Compos. 2013, 42, 231–238. [Google Scholar] [CrossRef]
- Elhajjar, R.F.; Shams, S.S. Compression testing of continuous fiber reinforced polymer composites with out-of-plane fiber waviness and circular notches. Polym. Test. 2014, 35, 45–55. [Google Scholar] [CrossRef]
- Feng, L.; Li, K.; Zhao, Z.; Li, H.; Zhang, L.; Lu, J.; Song, Q. Three-dimensional carbon/carbon composites with vertically aligned carbon nanotubes: Providing direct and indirect reinforcements to the pyrocarbon matrix. Mater. Des. 2016, 92, 120–128. [Google Scholar] [CrossRef]
- Zou, H.; Yin, W.; Cai, C.; Wang, B.; Liu, A.; Yang, Z.; Li, Y.; He, X. The out-of-plane compression behavior of cross-ply AS4/PEEK thermoplastic composite laminates at high strain rates. Materials 2018, 11, 2312. [Google Scholar] [CrossRef]
Sample No. | T (°C) | Braiding Angle α (°) | Fiber Volume Fraction (%) | Length (mm) | Width (mm) | Thickness (mm) | Weight (g) | Density (g·cm−3) |
---|---|---|---|---|---|---|---|---|
3B5D21-1 | 25 | 21 | 49.27% | 9.64 | 9.57 | 8.13 | 1.15 | 1.53 |
3B5D21-2 | 60 | 21 | 49.27% | 9.59 | 9.50 | 8.05 | 1.12 | 1.53 |
3B5D21-3 | 90 | 21 | 49.27% | 10.04 | 9.53 | 8.05 | 1.16 | 1.51 |
3B5D21-4 | 120 | 21 | 49.27% | 9.52 | 9.55 | 8.07 | 1.12 | 1.53 |
3B5D21-5 | 150 | 21 | 49.27% | 9.77 | 9.53 | 8.19 | 1.15 | 1.51 |
3B5D21-6 | 180 | 21 | 49.27% | 9.65 | 9.54 | 8.17 | 1.13 | 1.50 |
Mean | – | – | – | 9.70 | 9.54 | 8.11 | 1.14 | 1.52 |
S* | – | – | – | 0.19 | 0.02 | 0.06 | 0.02 | 0.01 |
3B5D32-1 | 25 | 32 | 48.84% | 9.83 | 9.55 | 8.83 | 1.19 | 1.44 |
3B5D32-2 | 60 | 32 | 48.84% | 9.62 | 9.57 | 8.91 | 1.18 | 1.44 |
3B5D32-3 | 90 | 32 | 48.84% | 9.64 | 9.52 | 8.88 | 1.17 | 1.44 |
3B5D32-4 | 120 | 32 | 48.84% | 9.65 | 9.51 | 8.89 | 1.16 | 1.42 |
3B5D32-5 | 150 | 32 | 48.84% | 9.68 | 9.57 | 8.82 | 1.19 | 1.46 |
3B5D32-6 | 180 | 32 | 48.84% | 9.55 | 9.41 | 8.87 | 1.16 | 1.46 |
Mean | – | – | – | 9.66 | 9.52 | 8.87 | 1.18 | 1.44 |
S* | – | – | – | 0.09 | 0.06 | 0.03 | 0.01 | 0.02 |
Temperature (°C) | Strength (MPa) | Modulus (GPa) | ||
---|---|---|---|---|
3B5D21 | 3B5D32 | 3B5D21 | 3B5D32 | |
25 | 305.82 | 285.94 | 3.27 | 2.94 |
60 | 301.04 | 283.21 | 2.78 | 2.62 |
90 | 283.31 | 277.34 | 2.63 | 2.49 |
120 | 260.00 | 252.07 | 2.42 | 2.23 |
150 | 240.51 | 220.98 | 2.06 | 1.84 |
180 | 221.91 | 207.56 | 1.56 | 1.51 |
Mean | 268.77 | 254.52 | 2.45 | 2.27 |
S | 33.75 | 33.67 | 0.59 | 0.53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, H.-m.; Li, D.-s.; Jiang, L. High Temperature Mechanical Response and Failure Analysis of 3D Five-Directional Braided Composites with Different Braiding Angles. Materials 2019, 12, 3506. https://doi.org/10.3390/ma12213506
Zuo H-m, Li D-s, Jiang L. High Temperature Mechanical Response and Failure Analysis of 3D Five-Directional Braided Composites with Different Braiding Angles. Materials. 2019; 12(21):3506. https://doi.org/10.3390/ma12213506
Chicago/Turabian StyleZuo, Hong-mei, Dian-sen Li, and Lei Jiang. 2019. "High Temperature Mechanical Response and Failure Analysis of 3D Five-Directional Braided Composites with Different Braiding Angles" Materials 12, no. 21: 3506. https://doi.org/10.3390/ma12213506
APA StyleZuo, H.-m., Li, D.-s., & Jiang, L. (2019). High Temperature Mechanical Response and Failure Analysis of 3D Five-Directional Braided Composites with Different Braiding Angles. Materials, 12(21), 3506. https://doi.org/10.3390/ma12213506