Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = five-directional braiding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4634 KiB  
Article
Tensile Mechanical Properties and Failure Behavior Analysis of Three-Dimensional Woven Composite with Different Apertures and Braiding Angles
by Hailiang Su, Zhe Han, Tengteng Wei, Deng An, Qiulin Qin and Zhenxiao Wei
Coatings 2025, 15(4), 440; https://doi.org/10.3390/coatings15040440 - 8 Apr 2025
Viewed by 592
Abstract
The effects of opening size and braiding angle on the tensile behavior of 3D five-way braided composites were systematically studied, and the mechanical properties, failure modes, and fracture characteristics of the composites were comprehensively analyzed. Initially, a static tensile test was conducted. The [...] Read more.
The effects of opening size and braiding angle on the tensile behavior of 3D five-way braided composites were systematically studied, and the mechanical properties, failure modes, and fracture characteristics of the composites were comprehensively analyzed. Initially, a static tensile test was conducted. The results demonstrated that both the tensile strength and tensile modulus of the three-dimensional (3D) braided composites decreased as the braiding angle increased. The sensitivity of the tensile modulus to the aperture size increased significantly as the aperture increased. For specimens with varying braiding angles, smaller apertures were more effective in withstanding higher stress concentrations around the opening, with minimal impact on the tensile strength. In comparison to the laminate composites, the 3D braided composites, regardless of braiding angle, retained higher tensile strength after hole formation at the same aperture size. The fracture of the samples was observed and captured using an optical microscope. It was observed that the failure mode of the 3D braided composites progressively transitioned from fiber fractures to interface debonding with an increase in the braiding angle. After hole formation, stress concentration at the aperture edge caused crack propagation along the braiding direction. Larger apertures resulted in more severe cracks, ultimately leading to specimen failure. Full article
Show Figures

Figure 1

18 pages, 5517 KiB  
Article
Numerical Analysis on Mechanical Properties of 3D Five-Directional Circular Braided Composites
by Weiliang Zhang, Chunlei Li, Liang Li, Wei Wang, Lei Yang, Chaohang Zhang and Xiyue Zhang
Processes 2025, 13(3), 800; https://doi.org/10.3390/pr13030800 - 9 Mar 2025
Cited by 1 | Viewed by 859
Abstract
Based on the analysis of the motion law of 3D five-directional circular transverse braided fibers, this paper obtains the angle calculation formula between fibers and the local polar coordinate system in various cell models by transforming the position coordinates of fiber nodes. The [...] Read more.
Based on the analysis of the motion law of 3D five-directional circular transverse braided fibers, this paper obtains the angle calculation formula between fibers and the local polar coordinate system in various cell models by transforming the position coordinates of fiber nodes. The stress transformation matrix between the local coordinate system and the global coordinate system of any fiber in the circular braided single cell is derived without considering the physical force on the single-cell micro-hexahedron unit. The calculation formulas of braided parameters such as the overall stiffness matrix and fiber volume content of the circular braided composite material after considering the matrix are derived by using the volume average method; the length of braided knuckles is 2 mm, the inner diameter of inner cells is 7 mm, the number of radial and axial braided yarns is 80, the height of inner cells is 0.5 mm, and the filling coefficient is 0.61. Comparing the results of the numerical prediction model with the experimental results in reference, it is found that the error of the numerical prediction model deduced in this paper is small. Therefore, this model can be used to fully study the effects of braided parameters such as cell inner diameter, cell height, and node length on the mechanical properties of composites. Full article
Show Figures

Figure 1

18 pages, 8011 KiB  
Article
Seismic Response Variance of Depositional Sequences: Implications for Reservoir Prediction in Lacustrine Basin
by Qiaolin He, Shuwen Yang, Wenxiang He, Yong Hu, Tong Wang and Xiaoyang Gao
Processes 2023, 11(8), 2481; https://doi.org/10.3390/pr11082481 - 18 Aug 2023
Viewed by 1384
Abstract
In recent years, lithologic oil and gas reservoirs have become an important target in continental hydrocarbon-bearing basins. Geophysical prospecting technology using seismic data is an indispensable tool for oil and gas exploration. However, while previous work has paid much attention to the seismic [...] Read more.
In recent years, lithologic oil and gas reservoirs have become an important target in continental hydrocarbon-bearing basins. Geophysical prospecting technology using seismic data is an indispensable tool for oil and gas exploration. However, while previous work has paid much attention to the seismic responses of reservoirs (sandstones), the seismic responses of depositional sequences composed of sandstone–mudstone cycles are not well understood in reservoir prediction. This problem seriously restricts efficient oil–gas exploration and development. The Cretaceous Baxigai Formation in the Yingmaili area, west of the Tabei Uplift, is an important exploration target for lithologic oil and gas reservoirs in the Tarim Basin. The Baxigai Formation is deeply buried with thin thickness. The Baxigai Formation in the study area is divided into a lower sandstone section and an upper mudstone section. Braided river delta sand bodies are developed in the lower sandstone section, and braided river delta sand bodies and beach bar sand bodies are developed in the upper mudstone section. According to the difference in the depositional sequences in different zones, five types of the vertical combination style of sandstone and mudstone were identified. Through seismic forward modeling, the seismic response variance of the five kinds of sequence models was established. Then, the amplitude attributes were extracted via wavelet decomposition to reflect the distribution of sandstone–mudstone in different zones. This could help predict the vertical and horizontal distributions of different depositional sequences and the sandstones in these sequences. During the sedimentary period of the upper mudstone section of the Baxigai Formation, the beach bar sand bodies were distributed along the northeast coast. The thin sand bodies pinched out along the up-dip direction to form favorable lithologic traps, which has important significance for lithologic reservoir exploration. Full article
Show Figures

Figure 1

18 pages, 8536 KiB  
Article
Thermo-Viscoelastic Response of 3D Braided Composites Based on a Novel FsMsFE Method
by Jun-Jun Zhai, Xiang-Xia Kong and Lu-Chen Wang
Materials 2021, 14(2), 271; https://doi.org/10.3390/ma14020271 - 7 Jan 2021
Cited by 13 | Viewed by 2553
Abstract
A homogenization-based five-step multi-scale finite element (FsMsFE) simulation framework is developed to describe the time-temperature-dependent viscoelastic behavior of 3D braided four-directional composites. The current analysis was performed via three-scale finite element models, the fiber/matrix (microscopic) representative unit cell (RUC) model, the yarn/matrix (mesoscopic) [...] Read more.
A homogenization-based five-step multi-scale finite element (FsMsFE) simulation framework is developed to describe the time-temperature-dependent viscoelastic behavior of 3D braided four-directional composites. The current analysis was performed via three-scale finite element models, the fiber/matrix (microscopic) representative unit cell (RUC) model, the yarn/matrix (mesoscopic) representative unit cell model, and the macroscopic solid model with homogeneous property. Coupling the time-temperature equivalence principle, multi-phase finite element approach, Laplace transformation and Prony series fitting technology, the character of the stress relaxation behaviors at three scales subject to variation in temperature is investigated, and the equivalent time-dependent thermal expansion coefficients (TTEC), the equivalent time-dependent thermal relaxation modulus (TTRM) under micro-scale and meso-scale were predicted. Furthermore, the impacts of temperature, structural parameters and relaxation time on the time-dependent thermo-viscoelastic properties of 3D braided four-directional composites were studied. Full article
(This article belongs to the Special Issue Modeling of Coupled Phenomena in Novel Ferromagnetic Materials)
Show Figures

Figure 1

21 pages, 5526 KiB  
Article
Ground Control Point Distribution for Accurate Kilometre-Scale Topographic Mapping Using an RTK-GNSS Unmanned Aerial Vehicle and SfM Photogrammetry
by Eilidh Stott, Richard D. Williams and Trevor B. Hoey
Drones 2020, 4(3), 55; https://doi.org/10.3390/drones4030055 - 8 Sep 2020
Cited by 90 | Viewed by 12624
Abstract
Unmanned Aerial Vehicles (UAVs) have revolutionised the availability of high resolution topographic data in many disciplines due to their relatively low-cost and ease of deployment. Consumer-grade Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) equipped UAVs offer potential to reduce or eliminate ground [...] Read more.
Unmanned Aerial Vehicles (UAVs) have revolutionised the availability of high resolution topographic data in many disciplines due to their relatively low-cost and ease of deployment. Consumer-grade Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) equipped UAVs offer potential to reduce or eliminate ground control points (GCPs) from SfM photogrammetry surveys, removing time-consuming target deployment. Despite this, the removal of ground control can substantially reduce the georeferencing accuracy of SfM photogrammetry outputs. Here, a DJI Phantom 4 RTK UAV is deployed to survey a 2 × 0.5 km reach of the braided River Feshie, Scotland that has local channel-bar relief of c.1 m and median grain size c.60 mm. Five rectangular adjacent blocks were flown, with images collected at 20° from the nadir across a double grid, with strips flown in opposing directions to achieve locally convergent imagery geometry. Check point errors for seven scenarios with varying configurations of GCPs were tested. Results show that, contrary to some published Direct Georeferencing UAV investigations, GCPs are not essential for accurate kilometre-scale topographic modelling. Using no GCPs, 3300 independent spatially-distributed RTK-GNSS surveyed check points have mean z-axis error −0.010 m (RMSE = 0.066 m). Using 5 GCPs gave 0.016 m (RMSE = 0.072 m). Our check point results do not show vertical systematic errors, such as doming, using either 0 or 5 GCPs. However, acquiring spatially distributed independent check points to check for systematic errors is recommended. Our results imply that an RTK-GNSS UAV can produce acceptable errors with no ground control, alongside spatially distributed independent check points, demonstrating that the technique is versatile for rapid kilometre-scale topographic survey in a range of geomorphic environments. Full article
(This article belongs to the Special Issue Drones in Geography)
Show Figures

Figure 1

17 pages, 5230 KiB  
Article
Effects of Temperature on Bending Properties of Three-Dimensional and Five-Directional Braided Composite
by Peng Li, Na Jia, Xiaoyuan Pei, Zhenkai Wan, Jialu Li, Zhenrong Zheng and Hailiang Wu
Molecules 2019, 24(21), 3977; https://doi.org/10.3390/molecules24213977 - 3 Nov 2019
Cited by 9 | Viewed by 2702
Abstract
The bending properties of three-dimensional (3Dim) and five-directional (5Dir) braided/epoxy resin composites at room temperature, 90 °C, 110 °C, and 150 °C and heating for 0.25 h, 10 h, and 30 h, respectively, were studied. The effect of different temperatures and heating times [...] Read more.
The bending properties of three-dimensional (3Dim) and five-directional (5Dir) braided/epoxy resin composites at room temperature, 90 °C, 110 °C, and 150 °C and heating for 0.25 h, 10 h, and 30 h, respectively, were studied. The effect of different temperatures and heating times on the bending property of these composites was discussed. The results showed that the bending strength of these composites at 90 °C, 110 °C, and 150 °C and heating time of 0.25 h is 33.86%, 46.27%, and 83.94% lower, respectively, than that at room temperature. In addition, 3Dim–5Dir braided composites exhibit different damage modes at different temperatures, revealing different failure mechanisms. Heating temperature has greater influence on the bending properties of these composites than heating time. The results provided a basis for the application of resin-based 3Dim–5Dir braided/epoxy resin composites at different temperatures. Full article
(This article belongs to the Special Issue Fibre Reinforced Composites: Interfacial Modifications and Property)
Show Figures

Figure 1

15 pages, 7973 KiB  
Article
High Temperature Mechanical Response and Failure Analysis of 3D Five-Directional Braided Composites with Different Braiding Angles
by Hong-mei Zuo, Dian-sen Li and Lei Jiang
Materials 2019, 12(21), 3506; https://doi.org/10.3390/ma12213506 - 25 Oct 2019
Cited by 22 | Viewed by 3192
Abstract
Three-dimensional (3D) five-directional braided composites are extensively applied in aeronautics and national defense due to their integrity and structural superiorities. In this paper, 3D five-directional braided carbon/epoxy composites were manufactured, and the high temperature mechanical response and failure mechanisms of composites with braiding [...] Read more.
Three-dimensional (3D) five-directional braided composites are extensively applied in aeronautics and national defense due to their integrity and structural superiorities. In this paper, 3D five-directional braided carbon/epoxy composites were manufactured, and the high temperature mechanical response and failure mechanisms of composites with braiding angles of 21° and 32° were studied. The out-of-plane compression tests of composites with different braiding angles were conducted at temperatures ranging from 25 °C to 180 °C. Then compression stress–strain curves, compression mechanical response, and failure modes of composites at high temperatures were analyzed and compared. The results show that compression stress–strain curves linearly increased at the initial stage and dropped at various degrees at different temperatures for composites with different braiding angles. The temperature and braiding angle were both important parameters affecting out-of-plane compression properties of 3D five-directional braided composites. Mechanical properties decreased with increasing temperature for both 21° and 32° specimens. Moreover, composites with a small braiding angle possessed higher properties at each temperature point. The morphologies manifested that the failures were a symmetric ±45° shear crack for 21° specimens and a thorough 45° shear crack for 32° specimens, and a 45° fracture weakened with increasing temperature. Full article
Show Figures

Figure 1

14 pages, 5354 KiB  
Article
Mechanical Characterization and Impact Damage Assessment of Hybrid Three-Dimensional Five-Directional Composites
by Liwei Wu, Wei Wang, Qian Jiang, Chunjie Xiang and Ching-Wen Lou
Polymers 2019, 11(9), 1395; https://doi.org/10.3390/polym11091395 - 24 Aug 2019
Cited by 21 | Viewed by 3456
Abstract
The effects of braided architecture and co-braided hybrid structure on low-velocity response of carbon-aramid hybrid three-dimensional five-directional (3D5d) braided composites were experimentally investigated in this study. Low-velocity impact was conducted on two types of hybridization and one pure carbon fiber braided reinforced composites [...] Read more.
The effects of braided architecture and co-braided hybrid structure on low-velocity response of carbon-aramid hybrid three-dimensional five-directional (3D5d) braided composites were experimentally investigated in this study. Low-velocity impact was conducted on two types of hybridization and one pure carbon fiber braided reinforced composites under three velocities. Damage morphologies after low-velocity impact were detected by microscopy and ultrasonic nondestructive testing. Interior damages of composites were highly dependent on yarn type and alignment. Impact damage tolerance was introduced to evaluate the ductility of hybrid composites. Maximum impact load and toughness changed with impact velocity and constituent materials of the composites. The composite with aramid fiber as axial yarn and carbon fiber as braiding yarn showed the best impact resistance due to the synergistic effect of both materials. Wavelet transform was applied in frequency and time domain analyses to reflect the failure mode and mechanism of hybrid 3D5d braided composites. Aramid fibers were used either as axial yarns or braiding yarns, aiding in the effective decrease in the level of initial damage. In particular, when used as axial yarns, aramid fibers effectively mitigate the level of damage during damage evolution. Full article
(This article belongs to the Special Issue Polymer Hybrid Composites)
Show Figures

Graphical abstract

Back to TopTop