Mechanical Behavior of Entangled Metallic Wire Materials under Quasi-Static and Impact Loading
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of the Entangled Metallic Wire Material
2.2. Experimental Devices and Methods
3. Results and Discussion
3.1. Effect of Quasi-Static Velocities
3.2. Effect of Impact Velocity
4. Conclusions
- (1)
- The maximum deformation of the EMWM mainly depends on the maximum load it bears.
- (2)
- With the increase of impact velocity, the effect of air damping inside EMWM on its mechanical properties will be more significant.
- (3)
- The EMWM has excellent characteristics of repetitive shock energy absorption.
Author Contributions
Funding
Conflicts of Interest
References
- Buzaud, E.; Guérard, S.; Girardot, J.; Viot, P.; Cosculluela, A.; Couque, H.; Cadoni, E. Strain rate influence on mechanical behavior of a single wire entangled material. EPJ Web Conf. 2018, 183, 03001. [Google Scholar] [CrossRef][Green Version]
- Ma, Y.H.; Scarpa, F.; Zhang, D.Y.; Zhu, B.; Chen, L.L.; Hong, J. A nonlinear auxetic structural vibration damper with metal rubber particles. Smart Mater. Struct. 2013, 22, 084012. [Google Scholar] [CrossRef]
- Ren, Z.Y.; Chen, Q.; Bai, H.; Wu, Y. Study on Damping Energy Dissipation Characteristics of Cylindrical Metal Rubber in Nonforming Direction. Adv. Mater. Sci. Eng. 2018, 2018, 5014789. [Google Scholar] [CrossRef]
- Zhang, B.; Lang, Z.Q.; Billings, S.A.; Tomlinson, G.R.; Rongong, J.A. System identification methods for metal rubber devices. Mech. Syst. Signal Process. 2013, 39, 207–226. [Google Scholar] [CrossRef]
- Hong, J.; Chen, L.; Ma, Y.; Tomlinson, G.; Rongong, J. Hysteretic properties of metal rubber particles. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2013, 227, 693–702. [Google Scholar] [CrossRef]
- Yu, H.; Sun, X.; Xu, J.; Zhang, S. Transition sets analysis based parametrical design of nonlinear metal rubber isolator. Int. J. Non-Linear Mech. 2017, 96, 93–105. [Google Scholar] [CrossRef]
- Zhang, D.; Scarpa, F.; Ma, Y.; Hong, J.; Mahadik, Y. Dynamic mechanical behavior of nickel-based superalloy metal rubber. Mater. Des. (1980–2015) 2014, 56, 69–77. [Google Scholar] [CrossRef]
- Ping, L.; Tan, Q.; Luhai, W.U.; Guo, H.E. Compressive and pseudo-elastic hysteresis behavior of entangled titanium wire materials. Mater. Sci. Eng. A 2010, 527, 3301–3309. [Google Scholar]
- Tan, Q.; Ping, L.; Du, C.; Wu, L.; Guo, H. Mechanical behaviors of quasi-ordered entangled aluminum alloy wire material. Mater. Sci. Eng. A 2009, 527, 38–44. [Google Scholar] [CrossRef]
- Cao, X.; Wei, C.; Liang, J.; Wang, L. Design and dynamic analysis of metal rubber isolators between satellite and carrier rocket system. Mech. Sci. 2019, 10, 71–78. [Google Scholar] [CrossRef]
- Ma, Y.; Di, G.; Zhang, D.; Jie, H. Compressive and dissipative behavior of metal rubber under constraints. Phys. Status Solidi 2015, 252, 1675–1681. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Q.; Zhang, D.; Scarpa, F.; Liu, B.; Jie, H. The mechanics of shape memory alloy metal rubber. Acta Mater. 2015, 96, 89–100. [Google Scholar] [CrossRef]
- Xu, D.; Han, B.H.; He, W.H.; Cheng, Z.G. Research on compressive mechanical properties of metal rubber and its constitutive relation model(Article). J. Vibroeng. 2018, 20, 332–344. [Google Scholar] [CrossRef]
- Yang, P.; Bai, H.; Xue, X.; Xiao, K.; Zhao, X. Vibration reliability characterization and damping capability of annular periodic metal rubber in the non-molding direction. Mech. Syst. Signal Process. 2019, 132, 622–639. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P.; Li, S.; Wang, Z.; Wu, G. Dynamic response of aluminum honeycomb sandwich panels under foam projectile impact. Mech. Adv. Mater. Struct. 2018, 25, 637–646. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Liu, J.; Li, X.; Jia, G. A numerical method for the ballistic performance prediction of the sandwiched open cell aluminum foam under hypervelocity impact. Aerosp. Sci. Technol. 2018, 75, 254–260. [Google Scholar] [CrossRef]
- Liu, P.; He, G.; Wu, L.H. Impact behavior of entangled steel wire material. Mater. Charact. 2009, 60, 900–906. [Google Scholar] [CrossRef]
- Bai, H.; Lu, C.; Cao, F.; Li, D. Metal Rubber Materials and Engineering Applications; Science Press: Beijing, China, 2014. [Google Scholar]
- Hu, J.; Du, Q.; Gao, J.; Kang, J.; Guo, B. Compressive mechanical behavior of multiple wire metal rubber. Mater. Des. 2018, 140, 231–240. [Google Scholar] [CrossRef]
- Ertas, B.; Luo, H.; Hallman, D. Dynamic characteristics of shape memory alloy metal mesh dampers. In Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, & Materials Conference, Palm Springs, CA, USA, 4–7 May 2009. [Google Scholar]
- Chandrasekhar, K.; Rongong, J.; Cross, E. Mechanical behaviour of tangled metal wire devices. Mech. Syst. Signal Process. 2019, 118, 13–29. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Q.; Zhang, D.; Scarpa, F.; Di, G.; Jie, H. Size-dependent mechanical behavior and boundary layer effects in entangled metallic wire material systems. J. Mater. Sci. 2017, 52, 3741–3756. [Google Scholar] [CrossRef]
Specimen Number | Mass (g) | Diameter (mm) | Height (mm) | Relative Density | Wire Diameter (mm) |
---|---|---|---|---|---|
EMWM _1 | 1355 | 120 | 61.5 | 0.242 | 0.3 |
EMWM _2 | 1356 | 120 | 60 | 0.252 | 0.3 |
EMWM _3 | 1354 | 120 | 62 | 0.243 | 0.3 |
EMWM _4 | 1357 | 120 | 61 | 0.248 | 0.3 |
EMWM _5 | 1356 | 120 | 58 | 0.261 | 0.3 |
Velocity (mm/min) | Loss Factor | Average Stiffness (kN/mm) |
---|---|---|
0.1 | 0.1929 | 7.5409 |
10 | 0.1794 | 7.6622 |
50 | 0.1657 | 7.6800 |
100 | 0.1493 | 7.7209 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Jiang, L.; Bai, H.; Lu, C.; Li, S. Mechanical Behavior of Entangled Metallic Wire Materials under Quasi-Static and Impact Loading. Materials 2019, 12, 3392. https://doi.org/10.3390/ma12203392
Wu Y, Jiang L, Bai H, Lu C, Li S. Mechanical Behavior of Entangled Metallic Wire Materials under Quasi-Static and Impact Loading. Materials. 2019; 12(20):3392. https://doi.org/10.3390/ma12203392
Chicago/Turabian StyleWu, Yiwan, Lei Jiang, Hongbai Bai, Chunhong Lu, and Shangzhou Li. 2019. "Mechanical Behavior of Entangled Metallic Wire Materials under Quasi-Static and Impact Loading" Materials 12, no. 20: 3392. https://doi.org/10.3390/ma12203392
APA StyleWu, Y., Jiang, L., Bai, H., Lu, C., & Li, S. (2019). Mechanical Behavior of Entangled Metallic Wire Materials under Quasi-Static and Impact Loading. Materials, 12(20), 3392. https://doi.org/10.3390/ma12203392