The Photocatalytic Degradation of Vehicle Exhausts by an Fe/N/Co–TiO2 Waterborne Coating under Visible Light
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Preparation of Fe/N/Co–TiO2
2.3. Preparation of the Photocatalytic Coating
2.4. Characterization
2.5. Photocatalytic Degradation Experiment
2.5.1. The Photocatalytic Degradation Experiment with MB
2.5.2. The Photocatalytic Degradation Experiment of VE
3. Results and Discussion
3.1. The Crystal Structures and Optical Properties of the Photocatalysts
3.1.1. The Effect of Doping Elements on Colloidal Particle Size
3.1.2. The Effect of Doping Elements on UV-Vis
3.1.3. The Effect of Calcination Temperature on XRD of Fe/N/Co–TiO2
3.1.4. The Effect of Calcination Temperature on the UV-Vis of Fe/N/Co–TiO2
3.1.5. TEM of Fe/N/Co–TiO2
3.1.6. XPS Spectra of Fe/N/Co–TiO2
3.2. The Photocatalytic Degradation Ability of the Photocatalyst
3.2.1. The Photocatalytic Degradation Performance of Fe/N/Co–TiO2 on MB
3.2.2. The Photocatalytic Degradation Performance of Fe/N/Co–TiO2 on VE
3.3. The Elementary and Photocatalytic Performance of Photocatalytic Coating
3.3.1. The Elementary Performance of Photocatalytic Coating
3.3.2. The Photocatalytic Degradation Performance of the Coating on VE
3.3.3. Reusability of the Photocatalytic Degradation
3.3.4. Durability of the Photocatalytic Coating
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, Z.; Du, Z.; Yan, Q.; Xiang, Q. The impact of Rhythm-Based visual reference system in long highway tunnels. Saf. Sci. 2016, 95, 75–82. [Google Scholar] [CrossRef]
- Keyte, I.; Albinet, A.; Harrison, R. On-Road traffic emissions of polycyclic aromatic hydrocarbons and their Oxy- and Nitro-Derivative compounds measured in road tunnel environments. Sci. Total Environ. 2016, 566, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Gao, Y.; Zhong, K.; Kang, Y. Impacts of Cross-Ventilation on the air quality in street canyons with different building arrangements. Build. Environ. 2016, 104, 1–12. [Google Scholar] [CrossRef]
- Lackovičová, A.; Guttová, A.; Bačkor, M.; Pišút, P.; Pišút, I. Response of Evernia prunastri to urban environmental conditions in Central Europe after the decrease of air pollution. Lichenologist 2013, 45, 89–100. [Google Scholar] [CrossRef]
- Lacressonnière, G.; Watson, L.; Gauss, M.; Engardt, M.; Andersson, C.; Beekmann, M.; Colette, A.; Foret, G.; Josse, B.; Marecal, V.; et al. Particulate matter air pollution in Europe in a +2 °C warming world. Atmos. Environ. 2017, 154, 129–140. [Google Scholar] [CrossRef]
- Guerreiro, C.; Foltescu, V.; De, L. Air quality status and trends in Europe. Atmos. Environ. 2014, 98, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuijsen, M. Urban and transport planning, environmental exposures and Health-New concepts, methods and tools to improve health in cities. Environ. Health 2016, 15, 38. [Google Scholar] [CrossRef]
- Stefania, S.; Marta, C.; Elena, I.; Flavia, V.; Hopke, P.; Rammpazzo, G. Urban air quality in a Mid-Size City-PM2.5 composition, sources and identification of impact areas: From local to long range contributions. Atmos. Res. 2017, 186, 51–62. [Google Scholar] [CrossRef]
- Leng, Z.; Yu, H. Novel method of coating titanium dioxide on to asphalt mixture based on the breath figure process for air-purifying purpose. J. Mater. Civ. Eng. 2015, 28, 52–59. [Google Scholar] [CrossRef]
- Franklin, M.; Vora, H.; Avol, E.; McConnelll, R.; Lurmann, F.; Liu, F.; Penfold, B.; Berhane, K.; Gilliland, F.; Gauderman, W. Predictors of intra-community variation in air quality. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 135–147. [Google Scholar] [CrossRef]
- Gao, X.; Hu, T.; Wang, K. Research on motor vehicle exhaust pollution monitoring technology. Appl. Mech. Mater. 2014, 620, 244–247. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, P.; Yang, W.; Ni, H. Vehicle exhaust: An overstated cause of haze in China. Sci. Total Environ. 2018, 612, 490–491. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, J.; Teixeira, V.; Azevedo, S.; Neves, J. Development of photocatalytic ceramic materials through the deposition of TiO2 nanoparticles layers. J. Nano Res. 2012, 18, 165–176. [Google Scholar] [CrossRef]
- Gauderman, W.; Mcconnell, R.; Gilliland, F.; London, S.; Thomas, D.; Avol, R.; Vora, H.; Berhane, K.; Rappaport, T.; Lurmann, F.; et al. Association between air pollution and lung function growth in southern California children. Am. J. Respir. Crit. Care Med. 2000, 166, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; John, C.; Eric, G. Agglomerated Activated Carbon Air Filter. U.S. Patent 5332426, 26 July 1994. [Google Scholar]
- Laura, B.; Ilaria, A.; Andrea, L.; Giovanni, P.; Germana, B.; Giadad, G.; Paolo, M.; Simona, R.; Danilo, B.; Pier, P. Nanocrystalline TiO2 coatings by Sol-Gel: Photocatalytic activity on Pietra di Noto biocalcarenite. J. Sol-Gel Sci. Technol. 2015, 75, 141–151. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Zhang, J.; Fan, J. Photocatalytic degradation of vehicle exhausts on asphalt pavement by TiO2/rubber composite structure. Constr. Build. Mater. 2015, 81, 224–232. [Google Scholar] [CrossRef]
- Snapkauskienė, V.; Valinčius, V.; Grigaitienė, V. Preparation and characterization of TiO2-Based Plasma-Sprayed coatings for NOₓ abatement. Catal. Today 2012, 191, 154–158. [Google Scholar] [CrossRef]
- Fujishima, A.; Hashimoto, K.; Watanabe, T. TiO2 Photocatalysis: Fundamentals and Applications; BKC: Bombay, India, 1999; Volume 35, pp. 1137–1138. ISBN 4-939051-03-X. [Google Scholar]
- Nelson, M.; Bohn, H. Soil-Based biofiltration for air purification: Potentials for environmental and space lifesupport application. J. Environ. Prot. Ecol. 2011, 2, 1084–1094. [Google Scholar] [CrossRef]
- Wang, W.; Weng, X.; Wu, K.; Chen, G.; Zheng, G.; Wu, Z. Exploration of air pollutant purification technology for urban road tunnels. Mod. Tunn. Tec. 2014, 51, 41–48. (In Chinese) [Google Scholar] [CrossRef]
- Vinodkumar, E.; Cristiana, D.; Jenny, S.; Detlef, B.; Suresh, C. Visible-Light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C-Photochem. Rev. 2015, 25, 1–29. [Google Scholar] [CrossRef]
- Scanlon, D.; Dunnill, C.; Buckeridge, J.; Shevlin, S.; Logsdail, S.; Woodley, S.; Catlow, C.; Powell, M.; Palgrave, R.; Parkin, I.; et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium dioxide nanoparticles: A review of current toxicological data. Part. Fibre Toxicol. 2013, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, L.; Sun, L. Research on the application of photocatalytic coating material with function of decomposing vehicle exhaust on road collision wall. Adv. Mater. Res. 2011, 356–360, 415–422. [Google Scholar] [CrossRef]
- Pirola, C.; Boffito, D.; Vitali, S. Photocatalytic coatings for building industry: Study of 1 year of activity in the NOx degradation. J. Coat. Technol. Res. 2012, 9, 453–458. [Google Scholar] [CrossRef]
- Martinez, T.; Bertron, A.; Escadeillas, G.; Ringot, E.; Simon, V. BTEX abatement by photocatalytic TiO2-bearing coatings applied to cement mortars. Build. Environ. 2014, 71, 186–192. [Google Scholar] [CrossRef]
- Kanda, I.; Uehara, K.; Yamao, Y.; Yoshikawa, Y.; Morikawa, T. A Wind-Tunnel study on Exhaust-Gas dispersion from road Vehicles-Part II: Effect of vehicle queues. J. Wind Eng. Ind. Aerodyn. 2006, 94, 659–673. [Google Scholar] [CrossRef]
- Gallusa, M.; Akylas, V.; Barmpas, F.; Beeldens, A.; Boonen, E.; Boreave, A.; Cazaunau, M.; Chen, H.; Daele, V.; Doussin, J.; et al. Photocatalytic De-Pollution in the Leopold II tunnel in Brussels: NOx abatement results. Build. Environ. 2015, 84, 125–133. [Google Scholar] [CrossRef]
- Guerrini, G. Photocatalytic performances in a city tunnel in Rome: NOx monitoring results. Constr. Build. Mater. 2012, 27, 165–175. [Google Scholar] [CrossRef]
- Torres-Carbajal, A.; Herrera-Velarde, S.; Castañeda-Priego, R. Brownian motion of a Nano-Colloidal particle: The role of the solvent. Phys. Chem. Chem. Phys. 2015, 17, 19557–19568. [Google Scholar] [CrossRef]
- Dai, W.; Chen, X.; Li, E.; Li, E.; Wang, X.; Liu, P.; Fu, X. Influence of pH value of TiO2 sol on surface gloss of corresponding TiO2 film coated on ceramic tiles. Surf. Eng. 2009, 25, 106–110. [Google Scholar] [CrossRef]
- Lai, L.; Wu, J. A facile solution approach to W, N Co-Doped TiO2 nanobelt thin films with high photocatalytic activity. J. Mater. Chem. A. 2015, 3, 15863–15868. [Google Scholar] [CrossRef]
- Phung, H.; Van, N.; Phuong, A.; Hung, V.; Nguyen, D. Effect of Co-Doping and Tri-Doping with transition metals and a nonmetal on photocatalytic activity in visible light of TiO2 thin film. J. Korean Phys. Soc. 2017, 70, 995–1000. [Google Scholar] [CrossRef]
- Fàbrega, C.; Andreu, T.; Cabot, A.; Morante, J. Location and catalytic role of iron species in TiO2: Fe photocatalysts: An EPR study. J. Photochem. Photobiol. A Chem. 2010, 211, 170–175. [Google Scholar] [CrossRef]
- Foura, G.; Chouchou, N.; Soualah, A.; Kouachi, K.; Guidotti, M.; Robert, D. Fe-doped TiO2 supported on HY zeolite for solar photocatalytic treatment of dye pollutants. Catalysts 2017, 7, 344. [Google Scholar] [CrossRef]
- Tong, T.; Zhang, J.; Tian, B.; Chen, F.; He, D. Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 2008, 155, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Ying, D.; Huang, B. Study of the nitrogen concentration influence on N-Doped TiO2 anatase from First-Principles calculations. J. Phys. Chem. C. 2007, 111, 12086–12090. [Google Scholar] [CrossRef]
- Dolat, D.; Mozia, S.; Ohtani, B.; Morawski, A. Nitrogen, Iron-Single modified (N-TiO2, Fe-TiO2) and Co-Modified (Fe,N-TiO2) rutile titanium dioxide as Visible-Light active photocatalysts. Chem. Eng. J. 2013, 225, 358–364. [Google Scholar] [CrossRef]
- AltıN, İ.; Sökmen, M.; Bıyıklıoğlu, Z. Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal. Mater. Sci. Semicond. Process. 2016, 45, 36–44. [Google Scholar] [CrossRef]
- Dvoranová, D.; Brezová, V.; Mazúr, M.; Malati, M. Investigations of metal-doped titanium dioxide photocatalysts. Appl. Catal. B Environ. 2002, 37, 91–105. [Google Scholar] [CrossRef]
- Cheng, X.; Yu, X.; Xing, Z. One-Step synthesis of Fe–N–S-Tri-Doped TiO2 catalyst and its enhanced visible light photocatalytic activity. Mater. Res. Bull. 2012, 47, 3804–3809. [Google Scholar] [CrossRef]
- Kim, T.; Glez, V.; Gyawali, G.; Cho, S. Synthesis of solar light responsive Fe, N Co-Doped TiO2 photocatalyst by sonochemical method. Catal. Today 2013, 212, 75–80. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, F.; Jiang, Y.; Li, F.; Wei, C. The effect of calcination temperature on the structure and activity of TiO2/SiO2, composite catalysts derived from titanium sulfate and fly ash acid sludge. Colloid Surf. A Physicochem. Eng. Asp. 2018, 554, 81–85. [Google Scholar] [CrossRef]
- Yang, H.; Sun, C.; Qiao, S.; Zou, J.; Liu, G.; Smith, S.; Cheng, H.; Lu, M. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, I.; Ghosh, S.; Naskar, M. Aqueous-Based Synthesis of Mesoporous TiO2 and Ag-TiO2 Nanopowders for Efficient Photodegradation of Methylene Blue. Ceram. Int. 2015, 42, 2488–2496. [Google Scholar] [CrossRef]
- Tian, B.; Li, C.; Zhang, J. One-Step preparation, characterization and Visible-Light photocatalytic activity of Cr-Doped TiO2 with anatase and rutile bicrystalline phases. Chem. Eng. J. 2012, 191, 402–409. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.; Bard, A. Novel Carbon-Doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 2006, 6, 24–28. [Google Scholar] [CrossRef]
- Pei, F.; Liu, Y.; Xu, S.; Lu, J.; Wang, C.; Cao, S. Nanocomposite of graphene oxide with nitrogen-doped TiO2 exhibiting enhanced photocatalytic efficiency for hydrogen evolution. Int. J. Hydrog. Energy 2013, 38, 2670–2677. [Google Scholar] [CrossRef]
- Zhang, A.; Long, L.; Liu, C.; Li, W.; Yu, H. Chemical recycling of the waste anodic electrolyte from the TiO2 nanotube preparation process to synthesize Facet-Controlled TiO2 single crystals as an efficient photocatalyst. Green Chem. 2014, 16, 2745. [Google Scholar] [CrossRef]
- Tursun, R.; Su, Y.; Yu, Q.; Tan, J.; Hu, T.; Luo, Z.; Zhang, J. Effect of doping on the structural, magnetic, and ferroelectric properties of Ni1-xAxTiO3 (A = Mn, Fe, Co, Cu, Zn; x = 0, 0.05, and 0.1). J. Alloy. Compd. 2019, 773, 288–298. [Google Scholar] [CrossRef]
- Liu, X.; He, B.; Fu, B. Effects of doping cobalt on the structures and performances of TiO2 photocatalyst. Acta Chim. Sin. 2008, 14, 1725–1730. (In Chinese) [Google Scholar] [CrossRef]
- Du, Y.; Zheng, P. Adsorption and photodegradation of methylene blue on TiO2-Halloysite adsorbents. Korean J. Chem. Eng. 2014, 31, 2051–2056. [Google Scholar] [CrossRef]
- Ma, J.; Wu, H.; Liu, Y.; He, H. Photocatalytic removal of NOx over visible light responsive Oxygen-Deficient TiO2. J. Phys. Chem. C 2014, 118, 7434–7441. [Google Scholar] [CrossRef]
- Zhu, H.; Qin, Z.; Shan, W.; Shen, W.; Wang, J. Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: A TPR study with H2 and CO as reducing agents. J. Catal. 2004, 225, 267–277. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Qian, J.; Li, Q.; Yang, J. Preparation of Bi-Doped TiO2 nanoparticles and their visible light photocatalytic performance. Chin. J. Catal. 2014, 35, 1578–1589. [Google Scholar] [CrossRef]
- Wan, T. Study on Titanium Dioxide-Polyacrylate Organic-Inorganic Hybrid Materials; Sichuan University of China: Chengdu, China, 2006. (In Chinese) [Google Scholar]
- Li, J.; Hong, X. Structure and properties of Nano-SiO2/acrylic composite emulsion with interpenetrating networks prepared via Soap-Free rmulsion polymerization. J. Dispers. Sci. Technol. 2010, 31, 5. [Google Scholar] [CrossRef]
- Clement, J.; Alexandra, L.; Lisa, E.; Neil, C.; Richard, L.; Maria, C. Effect of weathering and traffic exposure on removal of nitrogen oxides by photocatalytic coatings on roadside concrete structures. Mater. Struct. 2015, 48, 3159–3171. [Google Scholar] [CrossRef]
- Du, H. Preparation and Performance of New Materials for Automobile Exhaust Purification in Tunnels; Chang’an University of China: Xi’an, China, 2012. (In Chinese) [Google Scholar]
Number | Doping Element | Average Particle Size/nm | Distribution Coefficient (PDI) |
---|---|---|---|
1 | Undoped | 36.10 | 0.349 |
2 | Fe | 11.15 | 0.240 |
3 | Fe/N | 9.56 | 0.179 |
4 | Fe/N/Co | 10.64 | 0.204 |
Project | Pencil Hardness | Adhesive Strength | Water Resistance (168 h) | Salt and Alkali Resistance (168 h) |
---|---|---|---|---|
Coating | 4H | 1.15 Gpa (Ⅳ) | No abnormality (Ⅱ) | No abnormality(Ⅲ) |
Sample | Discolouration | Pulverization | Cracking | Blistering | Damage | Evaluation Grade |
---|---|---|---|---|---|---|
A | 1 | 1 | 0 | 0 | 1/S1 | 1 |
B | 0 | 1 | 0 | 0 | 1/S1 | 1 |
C | 1 | 1 | 0 | 0 | 1/S1 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, H.; Liu, G.; Zhang, R.; Song, L.; Chen, H. The Photocatalytic Degradation of Vehicle Exhausts by an Fe/N/Co–TiO2 Waterborne Coating under Visible Light. Materials 2019, 12, 3378. https://doi.org/10.3390/ma12203378
Xia H, Liu G, Zhang R, Song L, Chen H. The Photocatalytic Degradation of Vehicle Exhausts by an Fe/N/Co–TiO2 Waterborne Coating under Visible Light. Materials. 2019; 12(20):3378. https://doi.org/10.3390/ma12203378
Chicago/Turabian StyleXia, Huiyun, Guanyu Liu, Rui Zhang, Lifang Song, and Huaxin Chen. 2019. "The Photocatalytic Degradation of Vehicle Exhausts by an Fe/N/Co–TiO2 Waterborne Coating under Visible Light" Materials 12, no. 20: 3378. https://doi.org/10.3390/ma12203378
APA StyleXia, H., Liu, G., Zhang, R., Song, L., & Chen, H. (2019). The Photocatalytic Degradation of Vehicle Exhausts by an Fe/N/Co–TiO2 Waterborne Coating under Visible Light. Materials, 12(20), 3378. https://doi.org/10.3390/ma12203378