Luminescent Properties of (004) Highly Oriented Cubic Zinc Blende ZnO Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Choi, K.S.; Chang, S.P. Effect of structure morphologies on hydrogen gas sensing by ZnO Nanotubes. Mater. Lett. 2018, 230, 48–52. [Google Scholar] [CrossRef]
- Sonker, R.K.; Sikarwar, S.; Sabhajeet, S.R.; Yadav, B.C. Spherical growth of nanostructures ZnO based optical sensing and photovoltaic application. Opt. Mater. 2018, 83, 342–347. [Google Scholar] [CrossRef]
- Patil, V.L.; Vanalakar, S.A.; Patil, P.S.; Kim, J.H. Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technnique. Sens. Actuators B 2017, 239, 1185–1193. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Kulkarni, S.B.; Mathe, V.L. A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications. Sens. Actuators B 2018, 274, 1–9. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, T. An overview: Facet-dependent metal oxide semiconductor gas sensors. Sens. Actuators B 2018, 277, 604–633. [Google Scholar] [CrossRef]
- Fairose, S.; Ernest, S.; Daniel, S. Effect of Oxygen Sputter Pressure on the Structural, Morphological and Optical Properties of ZnO Thin Films for Gas Sensing Application. Sens. Imaging 2018, 19, 1. [Google Scholar] [CrossRef]
- Martínez Pérez, L.; Aguilar, M.; Zelaya-Angel, O.; Muñoz-Aguirre, N. Improved electrical, optical, and structural properties of undoped ZnO thin films grown by water-mist-assisted spray pyrolysis. Phys. Stat. Solidi A 2006, 203, 2411–2417. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Dogan, S.; Aurutin, V.; Cho, S.-J.; Morkoc, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef] [Green Version]
- Ashrafi, A.; Jagadish, C. Review of zincblende ZnO: Stability of metastable ZnO phases. J. Appl. Phys. 2007, 102, 071101. [Google Scholar] [CrossRef] [Green Version]
- Rosales-Córdova, A.; Castañeda-Guzmán, R.; Sanchez-Aké, C. Zinc blende phase detection in ZnO thin films grown with low doping Mn concentration by double-beam pulsed laser deposition. J. Mater. Sci. Mater. Electron. 2018, 29, 18971–18977. [Google Scholar] [CrossRef]
- Wang, X.D.; Zhou, H.; Wang, H.Q.; Ren, F.; Chen, X.H.; Zhan, H.H.; Zhou, Y.H.; Kang, J.Y. Cubic ZnO films obtained at low pressure by molecular beam epitaxy. Chin. Phys. B 2015, 24, 097106. [Google Scholar] [CrossRef]
- Martínez-Pérez, L.; Muñoz-Aguirre, N.; Muñoz-Aguirre, S.; Zelaya-Angel, O. Nanometric structures of highly oriented zinc blende ZnO thin films. Mater. Lett. 2015, 139, 63–65. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Xu, D.; Tan, Y.; Liu, X. Blue Luminescent Center in ZnO Film Deposited on Silicon Substrates. Opt. Mater. 2004, 26, 239–242. [Google Scholar] [CrossRef]
- Xu, X.; Xu, C.; Dai, J.; Pan, J.; Hu, J. Evolutions of defects and blue-green emissions in ZnO microwhiskers fabricated by vapor-phase transport. J. Phys. Chem. Solids 2012, 73, 858–862. [Google Scholar] [CrossRef]
- Zeng, H.; Duan, G.; Li, Y.; Yang, S.; Xu, X.; Cai, W. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Adv. Funct. Mater. 2010, 20, 561–572. [Google Scholar] [CrossRef]
- Micro Concentrated Cleaning Solution, International Products, Burlington, N.J. Available online: https://www.ipcol.com/cleaners/micro-90 (accessed on 25 January 2018).
- Kolodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed]
- Shiojiri, M.; Kaito, C. Structure and growth of ZnO smoke particles prepared by gas evaporation technique. J. Cryst. Growth 1981, 52, 173–177. [Google Scholar] [CrossRef]
- Morkoç, H.; Özgür, Ü. Zinc Oxide: Fundamentals, Materials and Device Technology; Wiley VCH Verlag GmbH&Co. KGaA: Weinheim, Germany, 2005. [Google Scholar]
- Rahman, F. Zinc oxide light-emitting diodes: A review. Opt. Eng. 2019, 58, 1. [Google Scholar] [CrossRef]
- Willander, M.; Nur, O.; Zhao, Q.X.; Yang, L.L.; Lorenz, M.; Cao, B.Q.; Zuñiga-Perez, J.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; et al. Zinc oxide nanorod based photonic devices: Recent progress in growth, light emitting diodes and lasers. Nanotechnology 2009, 20, 332001. [Google Scholar] [CrossRef] [PubMed]
- Son, D.I.; Kwon, B.W.; Park, D.H.; Seo, W.-S.; Yi, Y.; Angadi, B.; Lee, C.-L.; Choi, W.K. Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 2012, 7, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.J.; Im, S.; Lee, S.Y. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films 2000, 366, 107–110. [Google Scholar] [CrossRef]
- Sanchez-Valencia, J.R.; Alcaire, M.; Romero-Gómez, P.; Macias-Montero, M.; Aparicio, F.J.; Borras, A.; Gonzalez-Elipe, A.R.; Barranco, A. Oxygen Optical Sensing in Gas and Liquids with Nanostructured ZnO Thin Films Based on Exciton Emission Detection. J. Phys. Chem. C 2014, 118, 9852–9859. [Google Scholar] [CrossRef]
- Tumbul, A.; Aslan, F.; Demirozu, S.; Goktas, A.; Kilic, A.; Durgun, M.; Zarbali1, M.Z. Solution processed boron doped ZnO thin films: Influence of different boron complexes. Mater. Res. Express 2019, 6, 035903. [Google Scholar] [CrossRef]
- El Sayed, A.M.; Taha, S.; Said, G.; Al-Ghamdi, A.A.; Yakuphanoglu, F. Structural and optical properties of spin coated Zn1−xCrxO nanostructures. Superlattices Microstruct. 2013, 60, 108–119. [Google Scholar] [CrossRef]
- Wang, T.; Wu, H.; Wang, Z.; Chen, C.; Liu, C. Blue light emission from the heterostructured ZnO/InGaN/GaN. Nanoscale Res. Lett. 2013, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Alamé, S.; Navarro Quezada, A.; Skuridina, D.; Reich, C.; Henning, D.; Frentrup, M.; Wernicke, T.; Koslow, I.; Kneissl, M.; Esser, N.; et al. Preparation and structure of ultra-thin Ga(0001) layers on In0.11Ga0.89N-single quantum Wells. Mater. Sci. Semicond. Proc. 2016, 55, 7–11. [Google Scholar] [CrossRef]
- Ahmed, A.; Ali, T.; Siddique, M.N.; Ahmad, A.; Tripathi, P. Enhanced room temperature ferromagnetism in Ni doped SnO2 nanoparticles: A comprehensive study. J. Appl. Phys. 2017, 122, 083906. [Google Scholar] [CrossRef]
- Ahmad, N.; Khan, S. Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2. J. Alloys Compd. 2017, 720, 502–509. [Google Scholar] [CrossRef]
- Guo, L.; Yang, S.; Yang, C.; Yu, P.; Wang, J.; Ge, W.; Wong, G.K.L. Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties. Appl. Phys. Lett. 2000, 76, 2901–2903. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, H.-J. Origin of green luminescence of ZnO powders reacted with carbon black. J. Appl. Phys. 2007, 101, 124902. [Google Scholar] [CrossRef]
- Thapa, D.; Huso, J.; Morrison, J.L.; Corolewski, C.D.; McCluskey, M.D.; Bergman, L. Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films. Opt. Mater. 2016, 58, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Jin, H.; Xi, L.; Wang, Y.; Townsend, P.D. Photoluminescence identification of surface contaminants on zinc oxide from their phase transitions. Spectrosc. Lett. 2018, 51, 274–278. [Google Scholar] [CrossRef]
- Davood, R. Synthesis and photoluminescence characterization of ZnO nanoparticles. J. Lumin. 2013, 134, 213–219. [Google Scholar] [CrossRef]
- Uthirakumar, P.; Hong, C.H. Effect of annealing temperature and pH on morphology and optical property of highly dispersible ZnO nanoparticles. Mater. Charact. 2009, 60, 1305–1310. [Google Scholar] [CrossRef]
- Repp, S.; Erdem, E. Controlling the exciton energy of zinc oxide (ZnO) quantum dots by changing the confinement conditions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 152, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Repp, S.; Weber, S.; Erdem, E. Defect Evolution of Nonstoichiometric ZnO Quantum Dots. J. Phys. Chem. C 2016, 120, 25124–25130. [Google Scholar] [CrossRef]
- Reynolds, D.C.; Look, D.C.; Jogai, B.; Litton, C.W.; Collins, T.C.; Harsch, W.; Cantwell, G. Neutral-donor–bound-exciton complexes in ZnO crystals. Phys. Rev. B 1998, 57, 12151. [Google Scholar] [CrossRef]
- Willander, M.; Nur, O.; Rana Sadaf, J.; Israr Qadir, M.; Zaman, S.; Zainelabdin, A.; Bano, N.; Ijaz, H. Luminescence from Zinc Oxide Nanostructures and Polymersand their Hybrid Devices. Materials 2010, 3, 2643–2667. [Google Scholar] [CrossRef]
- Kayaci, F.; Vempati, S.; Donmez, I.; Biyikliab, N.; Uyar, T. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: A bottom-up approach to control defect density. Nanoscale 2014, 6, 10224–10234. [Google Scholar] [CrossRef]
- Zahn, D.R.T.; Maierhofer, C.; Winter, A.; Reckzügel, M.; Srama, R.; Rossow, U.; Thomas, A.; Horn, K.; Richter, W. In situ monitoring of heterostructure growth by optical spectroscopies: CdS on InP (110). Appl. Surf. Sci. 1992, 56–58, 684–690. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Wang, L.; Jia, Y.; Sun, Q. First-principles study of negative thermal expansion in zinc oxide. J. Appl. Phys. 2013, 114, 063508. [Google Scholar] [CrossRef]
- Sokolov, P.S.; Baranov, A.N.; Dobrokhotov, Z.V.; Solozhenko, V.L. Solozhenko, Synthesis and Thermal Stability of Cubic ZnO in the Salt Nanocomposites. Russ. Chem. Bulletin 2010, 19, 325. [Google Scholar] [CrossRef]
- Cerqueira, M.F.; Vasilevskiy, M.I.; Oliveira, F.; Rolo, A.G.; Viseu, T.; Ayres de Campos, J.; Alves, E.; Correia, R. Resonant Raman scattering in ZnO:Mn and ZnO:Mn:Al thin films grown by RF sputtering. J. Phys. Condens. Matter 2011, 23, 334205. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, E.A.; Mel’nikA, N.N.; TsurkanL, E.; Kicherman, V. Raman spectra of ZnO single cristal. J. Appl. Spectrosc. 1977, 26, 764–767. [Google Scholar] [CrossRef]
- Nikitenko, V.A.; Plekhanov, V.G.; Mukhin, S.V. Raman spectra of oxide zinc powders and single crystals. J. Appl. Spectrosc. 1996, 63, 290–292. [Google Scholar] [CrossRef]
Phase | Sample | Full-Width at Half-Maximum (°) | d (nm) | |
---|---|---|---|---|
Hexagonal | Z5 | 0.6160 | 34.6200 | 13.362 ± 0.24 |
Z6 | 0.4276 | 34.5014 | 19.452 ± 0.53 | |
Z7 | 0.5491 | 34.6088 | 15.152 ± 0.27 | |
Z8 | 0.6062 | 34.6200 | 13.762 ± 0.35 | |
Cubic | Z1 | 0.5163 | 44.6148 | 16.629 ± 0.30 |
Z2 | 0.5118 | 44.6186 | 16.777 ± 0.55 | |
Z3 | 0.5500 | 44.6200 | 15.613 ± 0.11 | |
Z4 | 0.5742 | 44.6000 | 14.953 ± 0.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Aguirre, N.; Martínez-Pérez, L.; Muñoz-Aguirre, S.; Flores-Herrera, L.A.; Vergara Hernández, E.; Zelaya-Angel, O. Luminescent Properties of (004) Highly Oriented Cubic Zinc Blende ZnO Thin Films. Materials 2019, 12, 3314. https://doi.org/10.3390/ma12203314
Muñoz-Aguirre N, Martínez-Pérez L, Muñoz-Aguirre S, Flores-Herrera LA, Vergara Hernández E, Zelaya-Angel O. Luminescent Properties of (004) Highly Oriented Cubic Zinc Blende ZnO Thin Films. Materials. 2019; 12(20):3314. https://doi.org/10.3390/ma12203314
Chicago/Turabian StyleMuñoz-Aguirre, Narcizo, Lilia Martínez-Pérez, Severino Muñoz-Aguirre, Luis Armando Flores-Herrera, Erasto Vergara Hernández, and Orlando Zelaya-Angel. 2019. "Luminescent Properties of (004) Highly Oriented Cubic Zinc Blende ZnO Thin Films" Materials 12, no. 20: 3314. https://doi.org/10.3390/ma12203314
APA StyleMuñoz-Aguirre, N., Martínez-Pérez, L., Muñoz-Aguirre, S., Flores-Herrera, L. A., Vergara Hernández, E., & Zelaya-Angel, O. (2019). Luminescent Properties of (004) Highly Oriented Cubic Zinc Blende ZnO Thin Films. Materials, 12(20), 3314. https://doi.org/10.3390/ma12203314