Predictive Modeling of Machining Temperatures with Force–Temperature Correlation Using Cutting Mechanics and Constitutive Relation
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
PSZ = primary shear zone (with subscript AB) |
SSZ = secondary shear zone or tool–chip interface (with subscript int) |
A; B; C; m; n = yield strength; strength coefficient; strain rate coefficient; thermal softening coefficient; and strain hardening coefficient in the J–C model |
;; T = melting temperature; room temperature; temperature |
; ; = cutting velocity; chip velocity; shear velocity |
α; ϕ; λ; θ = rake angle; shear angle; friction angle at the SSZ; angle between resultant force R and the PSZ |
w; t1;t2 = width of cut; depth of cut; and chip thickness |
= length of the PSZ; the length of the SSZ (tool–chip contact length) |
= strains and strain rates at the PSZ and SSZ |
= Oxley constants (ratio of the shear plane length to the thickness of the PSZ) |
= strain rate constant (ratio of the thickness of the SSZ to chip thickness) |
= strain hardening constant |
= calculated shear stress at the PSZ using the J–C model |
= calculated shear stress at the PSZ using a mechanics model |
= calculated shear stress at the SSZ using the J–C model |
= calculated shear stress at the SSZ using a mechanics model |
= calculated normal stress at the SSZ using a mechanics model |
= calculated normal stress at the SSZ using the J–C model |
= cutting force |
= thrust force |
= shear force at the PSZ |
= normal force at the PSZ |
F = shear force at the SSZ |
N = normal force at the SSZ |
R = resultant force |
Appendix A
20 | 54.00 | 668.30 | 716.74 | 716.85 | 496.92 | 496.92 |
15 | 142.80 | 708.86 | 672.02 | 672.14 | 489.05 | 489.05 |
10 | 230.80 | 703.98 | 627.83 | 627.96 | 477.84 | 477.84 |
5 | 317.40 | 760.19 | 584.22 | 584.37 | 467.56 | 467.56 |
−5 | 402.81 | 981.33 | 541.25 | 541.37 | 455.90 | 455.90 |
−10 | 486.92 | 782.91 | 498.98 | 499.12 | 440.89 | 440.89 |
−15 | 569.44 | 983.53 | 457.50 | 457.64 | 424.49 | 424.49 |
−20 | 650.07 | 859.45 | 416.88 | 417.02 | 408.30 | 408.30 |
20 | 520.11 | 698.60 | 484.26 | 484.37 | 481.07 | 481.07 |
15 | 492.60 | 711.75 | 497.56 | 497.70 | 477.07 | 477.07 |
10 | 463.90 | 745.24 | 511.48 | 511.62 | 471.94 | 471.94 |
5 | 434.10 | 728.80 | 526.03 | 526.17 | 463.62 | 463.62 |
−5 | 402.81 | 981.33 | 541.25 | 541.37 | 455.90 | 455.90 |
−10 | 370.22 | 826.86 | 557.18 | 557.32 | 444.73 | 444.73 |
−15 | 336.24 | 797.16 | 573.84 | 573.97 | 431.95 | 431.95 |
−20 | 300.46 | 803.64 | 591.29 | 591.42 | 419.36 | 419.36 |
References
- Karpat, Y.; Özel, T. Predictive analytical and thermal modeling of orthogonal cutting process—part I: Predictions of tool forces, stresses, and temperature distributions. J. Manuf. Sci. Eng. 2006, 128, 435–444. [Google Scholar] [CrossRef]
- Danish, M.; Ginta, T.L.; Habib, K.; Carou, D.; Rani AM, A.; Saha, B.B. Thermal analysis during turning of AZ31 magnesium alloy under dry and cryogenic conditions. Int. J. Adv. Manuf. Technol. 2017, 91, 2855–2868. [Google Scholar] [CrossRef]
- Ning, J.; Nguyen, V.; Liang, S.Y. Analytical modeling of machining forces of ultra-fine-grained titanium. Int. J. Adv. Manuf. Technol. 2018, 1–10. [Google Scholar] [CrossRef]
- Danish, M.; Ginta, T.L.; Habib, K.; Abdul Rani, A.M.; Saha, B.B. Effect of cryogenic cooling on the heat transfer during turning of AZ31C magnesium alloy. Heat Transfer. Eng. 2018, 1–10. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, Y.T.; Lin, Y.F.; Hung, T.P.; Hsu, F.C.; Lin, C.F.; Lu, Y.C.; Liang, S.Y. Inverse analysis of the cutting force in laser-assisted milling on Inconel 718. Int. J. Adv. Manuf. Technol. 2018, 96, 905–914. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Qin, X.; Rong, Y.K. Study on the plane induction heating process strengthened by magnetic flux concentrator based on response surface methodology. J. Mech. Sci. Technol. 2018, 32, 2347–2356. [Google Scholar] [CrossRef]
- O’sullivan, D.; Cotterell, M. Temperature measurement in single point turning. J. Mater Process. Technol. 2001, 118, 301–308. [Google Scholar] [CrossRef]
- Leshock, C.E.; Shin, Y.C. Investigation on cutting temperature in turning by a tool-work thermocouple technique. J. Manuf. Sci. Eng. 1997, 119, 502–508. [Google Scholar] [CrossRef]
- Sutter, G.; Faure, L.; Molinari, A.; Ranc, N.; Pina, V. An experimental technique for the measurement of temperature fields for the orthogonal cutting in high speed machining. Int. J. Mach. Tool Manuf. 2003, 43, 671–678. [Google Scholar] [CrossRef]
- Wright, P.K. Correlation of tempering effects with temperature distribution in steel cutting tools. J. Eng. Ind. 1978, 100, 131–136. [Google Scholar] [CrossRef]
- Kato, S.; Yamaguchi, K.; Watanabe, Y.; Hiraiwa, Y. Measurement of temperature distribution within tool using powders of constant melting point. J. Eng. Ind. 1976, 98, 607–613. [Google Scholar] [CrossRef]
- Longbottom, J.M.; Lanham, J.D. Cutting temperature measurement while machining–A review. Aircr. Eng. Aerosp. Technol. 2005, 77, 122–130. [Google Scholar] [CrossRef]
- Umbrello, D. Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. J. Mater. Process Technol. 2008, 196, 79–87. [Google Scholar] [CrossRef]
- Liu, C.R.; Guo, Y.B. Finite element analysis of the effect of sequential cuts and tool–chip friction on residual stresses in a machined layer. Int. J. Mech. Sci. 2000, 42, 1069–1086. [Google Scholar] [CrossRef]
- Yen, Y.C.; Jain, A.; Altan, T. A finite element analysis of orthogonal machining using different tool edge geometries. J. Mater. Process Technol. 2004, 146, 72–81. [Google Scholar] [CrossRef]
- Özel, T.; Sima, M.; Srivastava, A.K.; Kaftanoglu, B. Investigations on the effects of multi-layered coated inserts in machining Ti–6Al–4V alloy with experiments and finite element simulations. CIRP Anal. 2010, 59, 77–82. [Google Scholar] [CrossRef]
- Umbrello, D.; M’saoubi, R.; Outeiro, J.C. The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. Int. J. Mach. Tool. Manuf. 2007, 47, 462–470. [Google Scholar] [CrossRef]
- Arrazola, P.J. Investigations on the effects of friction modeling in finite element simulation of machining. Int. J. Mech. Sci. 2010, 52, 31–42. [Google Scholar] [CrossRef]
- Lamikiz, A.; López de Lacalle, L.N.; Sanchez, J.A.; Bravo, U. Calculation of the specific cutting coefficients and geometrical aspects in sculptured surface machining. Mach. Sci. Technol. 2005, 9, 411–436. [Google Scholar] [CrossRef]
- Calleja, A.; Alonso, M.A.; Fernández, A.; Tabernero, I.; Ayesta, I.; Lamikiz, A.; López de Lacalle, L.N. Flank milling model for tool path programming of turbine blisks and compressors. Int. J. Prod. Res. 2015, 53, 3354–3369. [Google Scholar] [CrossRef]
- Lalwani, D.I.; Mehta, N.K.; Jain, P.K. Extension of Oxley’s predictive machining theory for Johnson and Cook flow stress model. J. Mater. Process Technol. 2009, 209, 5305–5312. [Google Scholar] [CrossRef]
- Adibi-Sedeh, A.H.; Madhavan, V.; Bahr, B. Extension of Oxley’s analysis of machining to use different material models. J. Manuf. Sci. Eng. 2003, 125, 656–666. [Google Scholar] [CrossRef]
- Komanduri, R.; Hou, Z.B. Thermal modeling of the metal cutting process—Part III: Temperature rise distribution due to the combined effects of shear plane heat source and the tool–chip interface frictional heat source. Int. J. Mech. Sci. 2001, 43, 89–107. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, S.Y. Cutting forces modeling considering the effect of tool thermal property—application to CBN hard turning. Int. J. Mach. Tool. Manuf. 2003, 43, 307–315. [Google Scholar] [CrossRef]
- Li, K.M.; Liang, S.Y. Modeling of cutting forces in near dry machining under tool wear effect. Int. J. Mach. Tool Manuf. 2007, 47, 1292–1301. [Google Scholar] [CrossRef]
- Shalaby, M.A.; El Hakim, M.A.; Veldhuis, S.C. A thermal model for hard precision turning. Int. J. Adv. Manuf. Technol. 2018, 98, 2401–2413. [Google Scholar] [CrossRef]
- Ivester, R.W.; Kennedy, M.; Davies, M.; Stevenson, R.; Thiele, J.; Furness, R.; Athavale, S. Assessment of machining models: Progress report. Mach. Sci. Eng. 2000, 4, 511–538. [Google Scholar] [CrossRef]
- Aydın, M. Cutting temperature analysis considering the improved Oxley’s predictive machining theory. J. Braz. Soc. Mech. Sci. Eng. 2016, 38, 2435–2448. [Google Scholar] [CrossRef]
- Ning, J.; Liang, S. Prediction of Temperature Distribution in Orthogonal Machining Based on the Mechanics of the Cutting Process Using a Constitutive Model. J. Manuf. Mater. Process. 2018, 2, 37. [Google Scholar] [CrossRef]
- Ning, J.; Liang, S. Evaluation of an Analytical Model in the Prediction of Machining Temperature of AISI 1045 Steel and AISI 4340 Steel. J. Manuf. Mater. Process. 2018, 2, 74. [Google Scholar] [CrossRef]
- Liang, S.; Shih, A.J. Analysis of Machining and Machine Tools; Chapter 7.4; Springer: New York, NY, USA; ISBN 978-1-4899-7643-7.
- Kolsky, H. An investigation of the mechanical properties of materials at very high rates of loading. Proc. Phys. Soc. Sect. B 1949, 62, 676. [Google Scholar] [CrossRef]
- Agmell, M.; Ahadi, A.; Ståhl, J.E. Identification of plasticity constants from orthogonal cutting and inverse analysis. Mech. Mater. 2014, 77, 43–51. [Google Scholar] [CrossRef]
- Ning, J.; Liang, S.Y. Model-driven determination of Johnson-Cook material constants using temperature and force measurements. Int. J. Adv. Manuf. Technol. 2018, 97, 1053–1060. [Google Scholar] [CrossRef]
- Ning, J.; Nguyen, V.; Huang, Y.; Hartwig, K.T.; Liang, S.Y. Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. Int. J. Adv. Manuf. Technol. 2018, 99, 1131–1140. [Google Scholar] [CrossRef]
- Ning, J.; Liang, S.Y. Inverse identification of Johnson-Cook material constants based on modified chip formation model and iterative gradient search using temperature and force measurements. Int. J. Adv. Manuf. Technol. 2019, 1–12. [Google Scholar] [CrossRef]
- M’saoubi, R.; Chandrasekaran, H. Investigation of the effects of tool micro-geometry and coating on tool temperature during orthogonal turning of quenched and tempered steel. Int. J. Mach. Tool Manuf. 2004, 44, 213–224. [Google Scholar] [CrossRef]
- Urbikain, G.; Campa, F.J.; Zulaika, J.J.; De Lacalle LN, L.; Alonso, M.A.; Collado, V. Preventing chatter vibrations in heavy-duty turning operations in large horizontal lathes. J. Sound Vib. 2015, 340, 317–330. [Google Scholar] [CrossRef]
- Urbicain, G.; Palacios, J.A.; Fernández, A.; Rodríguez, A.; de Lacalle, L.L.; Elías-Zúñiga, A. Stability prediction maps in turning of difficult-to-cut materials. Procedia Eng. 2013, 63, 514–522. [Google Scholar] [CrossRef]
- Klocke, F.; Lung, D.; Buchkremer, S. Inverse identification of the constitutive equation of Inconel 718 and AISI 1045 from FE machining simulations. Procedia CIRP 2013, 8, 212–217. [Google Scholar] [CrossRef]
- Özel, T.; Zeren, E. A methodology to determine work material flow stress and tool-chip interfacial friction properties by using analysis of machining. J. Manuf. Sci. Eng. 2006, 128, 119–129. [Google Scholar] [CrossRef]
- Özel, T.; Karpat, Y. Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater. Manuf. Process 2007, 22, 659–667. [Google Scholar] [CrossRef]
- Karpat, Y.; Özel, T. Predictive analytical and thermal modeling of orthogonal cutting process—part II: Effect of tool flank wear on tool forces, stresses, and temperature distributions. J. Manuf. Sci. Eng. 2006, 128, 445–453. [Google Scholar] [CrossRef]
- Attanasio, A.; Ceretti, E.; Rizzuti, S.; Umbrello, D.; Micari, F. 3D finite element analysis of tool wear in machining. CIRP Ann. Manuf. Technol. 2008, 57, 61–64. [Google Scholar] [CrossRef]
Methods | Experimental Techniques | Numerical Methods | Analytical Methods |
---|---|---|---|
Embedded thermocouple [7], tool–work thermocouple [8], infrared technique [9], graphic techniques [10,11] | FEA for machining forces, temperature distribution, residual stress, and chip morphology [13,14] | Chip formation model [21], Komanduri’s model [23], Shalaby’s model [26], Ning’s model [29] | |
Major advantage | Sufficient accuracy for in-situ/ post-processing measurement | Sufficient prediction capability | High computational efficiency |
Major disadvantage | High experimental complexity | High computational cost | Complex input requirement; high mathematical complexity |
Test | (m/min) | |||||
---|---|---|---|---|---|---|
1 | 200 | 0.15 | 625.42 | 439.86 | 407.39 | 895.07 |
2 | 200 | 0.3 | 1077.7 | 637.19 | 383.1 | 992.44 |
3 | 300 | 0.15 | 574.55 | 364.74 | 393.31 | 947.81 |
4 | 300 | 0.3 | 1003.6 | 531.84 | 374.64 | 1049.8 |
5 | 200 | 0.15 | 576 | 500 | 385 | 942 |
6 | 200 | 0.3 | 1007 | 740 | 367 | 1042 |
7 | 300 | 0.15 | 533 | 478 | 374 | 1017 |
8 | 300 | 0.3 | 1041 | 628 | 387 | 1025 |
Test | (s) | ||||
---|---|---|---|---|---|
1 | 402.81 | 981.33 | 1.12 | 9.64 | 0.389 |
2 | 446.86 | 982.63 | 16.64 | 0.99 | 0.252 |
3 | 434.20 | 834.04 | 10.40 | 12.00 | 0.258 |
4 | 467.29 | 1089.66 | 24.73 | 3.80 | 0.243 |
5 | 424.04 | 1091.96 | 10.14 | 15.92 | 0.293 |
6 | 458.62 | 962.50 | 24.96 | 7.63 | 0.239 |
7 | 448.55 | 974.66 | 19.93 | 4.16 | 0.240 |
8 | 428.82 | 1094.65 | 10.81 | 6.79 | 0.242 |
Test | (degs) | ||||
---|---|---|---|---|---|
1 | 27.44 | 541.25 | 541.37 | 455.90 | 455.90 |
2 | 29.70 | 496.39 | 496.50 | 400.62 | 400.62 |
3 | 28.80 | 512.32 | 512.43 | 358.80 | 358.80 |
4 | 31.04 | 480.25 | 480.39 | 330.97 | 330.97 |
5 | 28.85 | 528.96 | 529.10 | 397.45 | 397.45 |
6 | 31.05 | 490.90 | 491.01 | 361.49 | 361.49 |
7 | 30.23 | 505.30 | 505.42 | 311.87 | 311.86 |
8 | 31.08 | 478.63 | 478.75 | 296.56 | 296.56 |
Set | Method | A (MPa) | B (MPa) | C | m | n |
---|---|---|---|---|---|---|
1 | SHPB [32] | 553.1 | 600.8 | 0.0134 | 1 | 0.234 |
2 | FEA [40] | 546 | 487 | 0.03 | 0.672 | 0.25 |
3 | Analytical Modeling [41] | 451.6 | 819.5 | 0.0000009 | 1.0955 | 0.1736 |
4 | PSO [42] | 646.19 | 517.7 | 0.0102 | 0.94054 | 0.24597 |
5 | PSO-c [42] | 731.63 | 518.7 | 0.00571 | 0.94054 | 0.3241 |
6 | CPSO [42] | 546.83 | 609.35 | 0.01376 | 0.94053 | 0.2127 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, J.; Liang, S.Y. Predictive Modeling of Machining Temperatures with Force–Temperature Correlation Using Cutting Mechanics and Constitutive Relation. Materials 2019, 12, 284. https://doi.org/10.3390/ma12020284
Ning J, Liang SY. Predictive Modeling of Machining Temperatures with Force–Temperature Correlation Using Cutting Mechanics and Constitutive Relation. Materials. 2019; 12(2):284. https://doi.org/10.3390/ma12020284
Chicago/Turabian StyleNing, Jinqiang, and Steven Y. Liang. 2019. "Predictive Modeling of Machining Temperatures with Force–Temperature Correlation Using Cutting Mechanics and Constitutive Relation" Materials 12, no. 2: 284. https://doi.org/10.3390/ma12020284
APA StyleNing, J., & Liang, S. Y. (2019). Predictive Modeling of Machining Temperatures with Force–Temperature Correlation Using Cutting Mechanics and Constitutive Relation. Materials, 12(2), 284. https://doi.org/10.3390/ma12020284