Neural Network Modelling of Track Profile in Cold Spray Additive Manufacturing
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Artificial Neural Network Model Design and Training
3. Results and Discussion
3.1. Single-Track Profiles Validation
3.2. Neural Network Architecture Validation
3.3. Evaluation of Artificial Neural Network Modelling for Predicting Single-Track Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gärtner, F.; Stoltenhoff, T.; Schmidt, T.; Kreye, H. The cold spray process and its potential for industrial applications. J. Therm. Spray Techn. 2006, 15, 223–232. [Google Scholar] [CrossRef]
- Villafuerte, J. Current and future applications of cold spray technology. Met. Finish. 2010, 108, 37–39. [Google Scholar] [CrossRef]
- Luo, X.-T.; Li, C.-X.; Shang, F.-L.; Yang, G.-J.; Wang, Y.-Y.; Li, C.-J. High velocity impact induced microstructure evolution during deposition of cold spray coatings: A review. Surf. Coat. Tech. 2014, 254, 11–20. [Google Scholar] [CrossRef]
- Karthikeyan, J. The advantages and disadvantages of the cold spray coating process. In The Cold Spray Materials Deposition Process; Champagne, V.K., Ed.; Woodhead Publishing: New York, NY, USA, 2007; pp. 62–71. [Google Scholar]
- Pattison, J.; Celotto, S.; Morgan, R.; Bray, M.; O’Neill, W. Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication. Int. J. Mach. Tool. Manu. 2007, 47, 627–634. [Google Scholar] [CrossRef]
- Sova, A.; Grigoriev, S.; Okunkova, A.; Smurov, I. Potential of cold gas dynamic spray as additive manufacturing technology. Int. J. Adv. Manuf. Techn. 2013, 69, 2269–2278. [Google Scholar] [CrossRef]
- Pathak, S.; Saha, G. Development of sustainable cold spray coatings and 3D additive manufacturing components for repair/manufacturing applications: A critical review. Coatings 2017, 7, 122. [Google Scholar] [CrossRef]
- Li, W.; Yang, K.; Yin, S.; Yang, X.; Xu, Y.; Lupoi, R. Solid-state additive manufacturing and repairing by cold spraying: A review. J. Mater. Sci. Technol. 2018, 34, 440–457. [Google Scholar] [CrossRef]
- Yin, S.; Cavaliere, P.; Aldwell, B.; Jenkins, R.; Liao, H.; Li, W.; Lupoi, R. Cold spray additive manufacturing and repair: Fundamentals and applications. Addit. Manuf. 2018, 21, 628–650. [Google Scholar] [CrossRef]
- Mutombo, K. Research and Development of Ti and Ti alloys: Past, present and future. IOP Conf. Ser: Mater. Sci. Eng. 2018, 430, 0120071–0120076. [Google Scholar] [CrossRef]
- Titomic Titomic Kinetic FusionTM. Available online: https://www.titomic.com/titomic-kinetic-fusion.html (accessed on 22 March 2019).
- Danielsen Evjemo, L.; Moe, S.; Gravdahl, J.T.; Roulet-Dubonnet, O.; Gellein, L.T.; Brøtan, V. Additive Manufacturing by Robot Manipulator: An Overview of The State-of-The-Art and Proof-of-Concept Results. In Proceedings of the 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8. [Google Scholar]
- Ma, G.; Zhao, G.; Li, Z.; Yang, M.; Xiao, W. Optimization strategies for robotic additive and subtractive manufacturing of large and high thin-walled aluminum structures. Int. J. Adv. Manuf. Techn. 2019, 101, 1275–1292. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, W.B.; Li, D.Y.; Xiao, J.K.; Zhang, C. Modeling of thickness and profile uniformity of thermally sprayed coatings deposited on cylinders. J. Therm. Spray Techn. 2018, 27, 288–295. [Google Scholar]
- Barnett, B.; Trexler, M.; Champagne, V. Cold sprayed refractory metals for chrome reduction in gun barrel liners. Int. J. Refract. Met. H. 2015, 53, 139–143. [Google Scholar] [CrossRef]
- King, P.; Gulizia, S.; Urban, A.; Barnes, J. Process for producing A Preform using Cold Spray. Available online: https://patents.google.com/patent/US20170157671A1/en (accessed on 4 August 2019).
- Lynch, M.E.; Gu, W.; El-Wardany, T.; Hsu, A.; Viens, D.; Nardi, A.; Klecka, M. Design and topology/shape structural optimisation for additively manufactured cold sprayed components. Virtual Phys. Prototy. 2013, 8, 213–231. [Google Scholar] [CrossRef]
- Cormier, Y.; Dupuis, P.; Jodoin, B.; Corbeil, A. Pyramidal fin arrays performance using streamwise anisotropic materials by cold spray additive manufacturing. J. Therm. Spray Techn. 2016, 25, 170–182. [Google Scholar] [CrossRef]
- Perry, J.; Richer, P.; Jodoin, B.; Matte, E. Pin fin array heat sinks by cold spray additive manufacturing: Economics of powder recycling. J. Therm. Spray Techn. 2019, 28, 144–160. [Google Scholar] [CrossRef]
- AL-Mangour, B.; Dallala, R.; Zhim, F.; Mongrain, R.; Yue, S. Fatigue behavior of annealed cold-sprayed 316L stainless steel coating for biomedical applications. Mater. Lett. 2013, 91, 352–355. [Google Scholar] [CrossRef]
- Poza, P.; Múnez, C.J.; Garrido-Maneiro, M.A.; Vezzù, S.; Rech, S.; Trentin, A. Mechanical properties of Inconel 625 cold-sprayed coatings after laser remelting. Depth sensing indentation analysis. Surf. Coat. Tech. 2014, 243, 51–57. [Google Scholar] [CrossRef]
- Gärtner, F.; Stoltenhoff, T.; Voyer, J.; Kreye, H.; Riekehr, S.; Koçak, M. Mechanical properties of cold-sprayed and thermally sprayed copper coatings. Surf. Coat. Tech. 2006, 200, 6770–6782. [Google Scholar] [CrossRef]
- Suhonen, T.; Varis, T.; Dosta, S.; Torrell, M.; Guilemany, J.M. Residual stress development in cold sprayed Al, Cu and Ti coatings. Acta Mater. 2013, 61, 6329–6337. [Google Scholar] [CrossRef]
- Chen, C.; Xie, Y.; Verdy, C.; Liao, H.; Deng, S. Modelling of coating thickness distribution and its application in offline programming software. Surf. Coat. Techn. 2017, 318, 315–325. [Google Scholar] [CrossRef]
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robot. Cim-Int. Manuf. 2015, 31, 101–110. [Google Scholar] [CrossRef]
- Saqib, S.; Urbanic, R.J.; Aggarwal, K. Analysis of laser cladding bead morphology for developing additive manufacturing travel paths. Procedia CIRP 2014, 17, 824–829. [Google Scholar] [CrossRef]
- Liu, H.; Qin, X.; Huang, S.; Jin, L.; Wang, Y.; Lei, K. Geometry characteristics prediction of single track cladding deposited by high power diode laser based on genetic algorithm and neural network. Int. J. Precis. Eng. Man. 2018, 19, 1061–1070. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Nenadl, O.; Kuipers, W.; Koelewijn, N.; Ocelík, V.; De Hosson, J.T.M. A versatile model for the prediction of complex geometry in 3D direct laser deposition. Surf. Coat. Tech. 2016, 307, 292–300. [Google Scholar] [CrossRef]
- Suryakumar, S.; Karunakaran, K.P.; Bernard, A.; Chandrasekhar, U.; Raghavender, N.; Sharma, D. Weld bead modeling and process optimization in Hybrid Layered Manufacturing. Comput. Des. 2011, 43, 331–344. [Google Scholar] [CrossRef]
- Cai, Z.; Deng, S.; Liao, H.; Zeng, C.; Montavon, G. The Effect of Spray Distance and Scanning Step on the Coating Thickness Uniformity in Cold Spray Process. J. Therm. Spray Techn. 2014, 23, 354–362. [Google Scholar] [CrossRef]
- Mahapatra, M.M.; Li, L. Prediction of pulsed-laser powder deposits’ shape profiles using a back-propagation artificial neural network. P. I. Mech. Eng. B-J. Eng. 2008, 222, 1567–1576. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, G.; Hu, J.; Wu, L. Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. J. Intell. Manuf. 2014, 25, 157–163. [Google Scholar] [CrossRef]
- Klinkov, S.V.; Kosarev, V.F.; Ryashin, N.S.; Shikalov, V.S. Influence of particle impact angle on formation of profile of single coating track during cold spraying. In Proceedings of the AIP Conference Proceedings, Novosibirsk, Russia, 13–19 August 2018; Volum 2027, pp. 0200071–0200076. [Google Scholar]
- Kochar, P.; Sharma, A.; Suga, T.; Tanaka, M. Prediction and control of asymmetric bead shape in laser-arc hybrid fillet-lap joints in sheet metal welds. Lasers Manuf. Mater. Process. 2019, 6, 67–84. [Google Scholar] [CrossRef]
- Shafi, I.; Ahmad, J.; Shah, S.I.; Kashif, F.M. Impact of Varying Neurons and Hidden Layers in Neural Network Architecture for a Time Frequency Application. In Proceedings of the 2006 IEEE International Multitopic Conference, Islamabad, Pakistan, 23–24 December 2006; pp. 188–193. [Google Scholar]
- May, R.; Dandy, G.; Maier, H. Review of Input Variable Selection Methods for Artificial Neural Networks. In Artificial Neural Networks—Methodological Advances and Biomedical Applications; InTechOpen: London, UK, 2011; pp. 19–44. [Google Scholar]
- Barnard, E.; Wessels, L. Extrapolation and interpolation in neural network classifiers. IEEE Contr. Syst. Mag. 1992, 12, 50–53. [Google Scholar]
- Noriega, A.; Blanco, D.; Alvarez, B.J.; Garcia, A. Dimensional accuracy improvement of FDM square cross-section parts using artificial neural networks and an optimization algorithm. Int. J. Adv. Manuf. Technol. 2013, 69, 2301–2313. [Google Scholar] [CrossRef]
- Krishaniah, K.; Shahabudeen, P. Fundamentals of experimental design. In Applied Design of Experiments and Taguchi Methods; PHI Learning Pvt. Ltd.: New Delhi, India, 2012; pp. 22–48. [Google Scholar]
- Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Pearson Education, Inc.: New Jersey, NJ, USA, 2009. [Google Scholar]
- Burden, F.; Winkler, D. Bayesian regularization of neural networks. Method. Mol. Biol. 2008, 458, 25–44. [Google Scholar]
- Alibakshi, A. Strategies to develop robust neural network models: Prediction of flash point as a case study. Anal. Chim. Acta 2018, 1026, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-T.; Li, Y.-J.; Li, C.-X.; Yang, G.-J.; Li, C.-J. Effect of spray conditions on deposition behavior and microstructure of cold sprayed Ni coatings sprayed with a porous electrolytic Ni powder. Surf. Coat. Tech. 2016, 289, 85–93. [Google Scholar] [CrossRef]
- Pattison, J.; Celotto, S.; Khan, A.; O’Neill, W. Standoff distance and bow shock phenomena in the Cold Spray process. Surf. Coat. Tech. 2008, 202, 1443–1454. [Google Scholar] [CrossRef]
- Katherasan, D.; Elias, J.V.; Sathiya, P.; Haq, A.N. Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. J. Intell. Manuf. 2014, 25, 67–76. [Google Scholar] [CrossRef]
- Kotoban, D.; Grigoriev, S.; Okunkova, A.; Sova, A. Influence of a shape of single track on deposition efficiency of 316L stainless steel powder in cold spray. Surf. Coat. Tech. 2017, 309, 951–958. [Google Scholar] [CrossRef]
Level | Spray Angle (°) | Traverse Speed (mm/s) | Standoff Distance (mm) |
---|---|---|---|
1 | 45 | 25 | 30 |
2 | 60 | 100 | 40 |
3 | 75 | 200 | 50 |
4 | 90 | - | - |
MAE (mm) | MXAE (mm) | MAPE (%) | MXAPE (%) |
---|---|---|---|
0.05782 | 0.1522 | 8.342 | 10.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikeuchi, D.; Vargas-Uscategui, A.; Wu, X.; King, P.C. Neural Network Modelling of Track Profile in Cold Spray Additive Manufacturing. Materials 2019, 12, 2827. https://doi.org/10.3390/ma12172827
Ikeuchi D, Vargas-Uscategui A, Wu X, King PC. Neural Network Modelling of Track Profile in Cold Spray Additive Manufacturing. Materials. 2019; 12(17):2827. https://doi.org/10.3390/ma12172827
Chicago/Turabian StyleIkeuchi, Daiki, Alejandro Vargas-Uscategui, Xiaofeng Wu, and Peter C. King. 2019. "Neural Network Modelling of Track Profile in Cold Spray Additive Manufacturing" Materials 12, no. 17: 2827. https://doi.org/10.3390/ma12172827
APA StyleIkeuchi, D., Vargas-Uscategui, A., Wu, X., & King, P. C. (2019). Neural Network Modelling of Track Profile in Cold Spray Additive Manufacturing. Materials, 12(17), 2827. https://doi.org/10.3390/ma12172827