# Solution Behavior near Envelopes of Characteristics for Certain Constitutive Equations Used in the Mechanics of Polymers

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Material Models

## 3. System of Equations under Plane Strain Conditions

## 4. Characteristics and Characteristic Relations

## 5. Asymptotic Behavior of Solutions near Envelopes of Characteristics

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Alexandrov, S.; Richmond, O. Couette flows of rigid/plastic solids: Analytical examples of the interaction of constitutive and frictional laws. Int. J. Mech. Sci.
**2001**, 43, 653–665. [Google Scholar] [CrossRef] - Alexandrov, S.; Goldstein, R. Effect of constitutive equations on qualitative behavior of solutions in the vicinity of bi-material interfaces at large plastic strains. Cont. Mech. Therm.
**2016**, 28, 1635–1643. [Google Scholar] [CrossRef] - Silano, A.A.; Bhateja, S.K.; Pae, K.D. Effect of hydrostatic pressure on the mechanical behavior of polymers: Polyurethane, polyoxymethylene, and branched polyethylene. Int. J. Polym. Mater.
**1974**, 3, 117–131. [Google Scholar] [CrossRef] - Bowden, P.B.; Jukes, J.A. The plastic flow of isotropic polymers. J. Mater. Sci.
**1972**, 7, 52–63. [Google Scholar] [CrossRef] - Caddell, R.M.; Woodliff, A.R. Yield behavior of unoriented and oriented polycarbonate and polypropylene as influenced by temperature. Mater. Sci. Eng.
**1980**, 43, 189–198. [Google Scholar] [CrossRef][Green Version] - Farrokh, B.; Khan, A.S. A strain rate dependent yield criterion for isotropic polymers: Low to high rates of loading. Eur. J. Mech. A Solids
**2010**, 29, 274–282. [Google Scholar] [CrossRef] - Areias, P.; Vu-Bak, N.; Rabszuk, T. A multisurface constitutive model for highly cross-linked polymers with yield data obtained from molecular dynamics simulations. Int. J. Mech. Mater. Des.
**2018**, 14, 21–36. [Google Scholar] [CrossRef] - Alexandrov, S.; Richmond, O. Singular plastic flow fields near surfaces of maximum friction stress. Int. J. Non-Linear Mech.
**2001**, 36, 1–11. [Google Scholar] [CrossRef] - Alexandrov, S.; Mustafa, Y. Singular solutions in viscoplasticity under plane strain conditions. Meccanica
**2013**, 48, 2203–2208. [Google Scholar] [CrossRef] - Alexandrov, S.; Mustafa, Y. Quasi-static axially symmetric viscoplastic flows near very rough walls. Appl. Math. Model.
**2015**, 39, 4599–4606. [Google Scholar] [CrossRef] - Hill, R. The Mathematical Theory of Plasticity; Oxford University Press: London, UK, 1950. [Google Scholar]
- Shield, R.T. Plastic flow in a converging conical channel. J. Mech. Phys. Solids
**1955**, 3, 246–258. [Google Scholar] [CrossRef] - Spencer, A.J.M. A theory of the failure of ductile materials reinforced by elastic fibres. Int. J. Mech. Sci.
**1965**, 7, 197–209. [Google Scholar] [CrossRef] - Marshall, E.A. The compression of a slab of ideal soil between rough plates. Acta Mech.
**1967**, 3, 82–92. [Google Scholar] [CrossRef] - Spencer, A.J.M. Compression and shear of a layer of granular material. J. Eng. Math.
**2005**, 52, 251–264. [Google Scholar] [CrossRef] - Rebelo, N.; Kobayashi, S. A coupled analysis of viscoplastic deformation and heat transfer-II: Applications. Int. J. Mech. Sci.
**1980**, 22, 708–718. [Google Scholar] [CrossRef] - Chen, J.C.; Pan, C.; Rogue, C.M.O.L.; Wang, H.P. A Lagrangian reproducing kernel particle method for metal forming analysis. Comp. Mech.
**1998**, 22, 289–307. [Google Scholar] [CrossRef] - Facchinetti, M.; Miszuris, W. Analysis of the maximum friction condition for green body forming in an ANSYS environment. J. Eur. Ceram. Soc.
**2016**, 36, 2295. [Google Scholar] [CrossRef] - Alexandrov, S.; Kuo, C.Y.; Jeng, Y.R. A numerical method for determining the strain rate intensity factor under plane strain conditions. Cont. Mech. Therm.
**2016**, 28, 977–992. [Google Scholar] [CrossRef] - Alexandrov, S.; Kuo, C.Y.; Jeng, Y.R. An accurate numerical solution for the singular velocity field near the maximum friction surface in plane strain extrusion. Int. J. Solids Struct.
**2018**, 150, 107–116. [Google Scholar] [CrossRef] - Nepershin, R.I. Non-isothermal plane plastic flow of a thin layer compressed by flat rigid dies. Int. J. Mech. Sci.
**1997**, 39, 899–912. [Google Scholar] [CrossRef] - Adams, M.J.; Briscoe, B.J.; Corfield, G.M.; Lawrence, C.J.; Papathanasiou, T.D. An analysis of the plane-strain compression of viscous materials. Trans. ASME J. Appl. Mech.
**1997**, 64, 420–424. [Google Scholar] [CrossRef] - Raghava, R.; Caddell, R.M.; Yeh, G.S.Y. The macroscopic yield behaviour of polymers. J. Mater. Sci.
**1973**, 8, 225–232. [Google Scholar] [CrossRef][Green Version] - Spitzig, W.A.; Richmond, O. Effect of hydrostatic pressure on the deformation behavior of polyethylene and polycarbonate in tension and in compression. Polym. Eng. Sci.
**1979**, 19, 1129–1139. [Google Scholar] [CrossRef] - Bardia, P.; Narasimhan, R. Characterisation of pressure-sensitive yielding in polymers. Strain
**2006**, 42, 187–196. [Google Scholar] [CrossRef] - Lyamina, E.A.; Date, P.P. Planar plastic flow of polymers near very rough walls. Struct. Eng. Mech.
**2016**, 58, 707–718. [Google Scholar] [CrossRef] - Malvern, L.E. Introduction to the Mechanics of a Continuous Medium; Prentice-Hall: Englewood Cliffs, UK, 1969. [Google Scholar]
- Druyanov, B. Technological Mechanics of Porous Bodies; Clarendon Press: New York, NY, USA, 1993. [Google Scholar]
- Harris, D. A hyperbolic augmented elasto-plastic model for pressure-dependent yield. Acta Mech.
**2014**, 225, 2277–2299. [Google Scholar] [CrossRef][Green Version] - Alexandrov, S.; Miszuris, W.; Lang, L. An efficient method of analysis of heat transfer during plane strain upsetting of a viscoplastic strip. Z. Angew. Math. Mech.
**2019**, 99. [Google Scholar] [CrossRef] - Fries, T.P.; Belytschko, T. The extended/generalized finite element method: An overview of the method and its applications. Int. J. Numer. Meth. Eng.
**2010**, 84, 253–304. [Google Scholar] [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alexandrov, S.; Lang, L.; Lyamina, E.; Date, P.P. Solution Behavior near Envelopes of Characteristics for Certain Constitutive Equations Used in the Mechanics of Polymers. *Materials* **2019**, *12*, 2725.
https://doi.org/10.3390/ma12172725

**AMA Style**

Alexandrov S, Lang L, Lyamina E, Date PP. Solution Behavior near Envelopes of Characteristics for Certain Constitutive Equations Used in the Mechanics of Polymers. *Materials*. 2019; 12(17):2725.
https://doi.org/10.3390/ma12172725

**Chicago/Turabian Style**

Alexandrov, Sergei, Lihui Lang, Elena Lyamina, and Prashant P. Date. 2019. "Solution Behavior near Envelopes of Characteristics for Certain Constitutive Equations Used in the Mechanics of Polymers" *Materials* 12, no. 17: 2725.
https://doi.org/10.3390/ma12172725