Discrepancies in the Microstructures of Annealed Cu–Zr Bulk Alloy and Cu–Zr Alloy Films
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Microstructural Evolution in Annealed Cu–Zr Bulk Alloys
3.2. Microstructure in As-deposited and Annealed Cu–Zr Alloy Films
3.3. The Main Influencing Factors of Self-formed Cu Particles
3.4. Residual Stress in Cu–Zr Alloy Films
3.5. Formation Mechanism of Faceted Cu Particles on Cu–Zr Alloy Films
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lacour, S.P.; Jones, J.; Suo, Z.; Wagner, S. Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electr. Device Lett. 2004, 25, 179–181. [Google Scholar] [CrossRef]
- Li, G.L.; Tan, K.K.R.; Ng, S.H.; Chua, D.H.C. A multilevel zero-inflated model for the study of copper hillocks growth in integrated circuits manufacturing. IEEE Trans. Semiconduct. Manuf. 2018, 31, 385–394. [Google Scholar] [CrossRef]
- Weiss, D.; Gao, H.; Arzt, E. Constrained diffusional creep in UHV-produced copper thin films. Acta Mater. 2001, 49, 2395–2403. [Google Scholar] [CrossRef]
- Kraft, O.; Arzt, E. Current density and line width effects in electromigration: A new damage-based lifetime model. Acta Mater. 1998, 46, 3733–3743. [Google Scholar] [CrossRef]
- Lu, H.M.; Jiang, Q. Size-dependent surface energies of nanocrystals. J. Phys. Chem. B 2004, 108, 5617–5619. [Google Scholar] [CrossRef]
- Kraft, O.; Arzt, E. Electromigration mechanisms in conductor lines: Void shape changes and slit-like failure. Acta Mater. 1997, 45, 1599–1611. [Google Scholar] [CrossRef]
- Ramanath, G.; Xiao, H.Z.; Yang, L.C.; Rockett, A.; Allen, L.H. Evolution of microstructure in nanocrystalline Mo-Cu thin films during thermal annealing. J. Appl. Phys. 1995, 78, 2435–2440. [Google Scholar] [CrossRef]
- Chu, J.P.; Lin, T.N. Deposition, microstructure and properties of sputtered copper films containing insoluble molybdenum. J. Appl. Phys. 1999, 85, 6462–6469. [Google Scholar] [CrossRef]
- Michael, L.N.; Kim, C.U. Electromigration in Cu thin films with Sn and Al cross strips. J. Appl. Phys. 2001, 90, 4370–4376. [Google Scholar] [CrossRef]
- Jung, W.W.; Choi, S.K.; Kweon, S.Y.; Yeom, S.J. Platinum(100) hillock growth in a Pt/Ti electrode stack for ferroelectric random access memory. Appl. Phys. Lett. 2003, 83, 2160–2162. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.J.; Lee, Y.D.; Jeong, C.O.; Joo, Y.C. Effect of film thickness and annealing temperature on hillock distributions in pure Al films. Scripta Mater. 2007, 56, 17–20. [Google Scholar] [CrossRef]
- Iwamura, E.; Ohnishi, T.; Yoshikawa, K. A study of hillock formation on Al-Ta alloy films for interconnections of TFT-LCDs. Thin Solid Films 1995, 270, 450–455. [Google Scholar] [CrossRef]
- Hsieh, J.H.; Cheng, M.K.; Li, C.; Chen, S.H.; Chang, Y.G. Study of Cu emergence on the surface of TaN-Cu nanocomposite thin films and its effects on tribological property. Thin Solid Films 2008, 516, 5430–5434. [Google Scholar] [CrossRef]
- Martin, B.C.; Tracy, C.J.; Mayer, J.W.; Hendrickson, L.E. A comparative study of Hillock formation in aluminum films. Thin Solid Films 1995, 271, 64–68. [Google Scholar] [CrossRef]
- Arzt, E. Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 1998, 46, 5611–5626. [Google Scholar] [CrossRef]
- Adams, B.L.; Olson, T. The mesostructure—properties linkage in polycrystals. Prog. Mater. Sci. 1998, 43, 1–88. [Google Scholar] [CrossRef]
- Stoneham, A.M.; Harding, J.H. Not to big, not too small, the appropriate scale. Nat. Mater. 2003, 2, 77–83. [Google Scholar] [CrossRef]
- Haronian, D. A low-cost micromechanical accelerometer with integrated solid-state sensor. Sensors Actuators 2000, 84, 149–155. [Google Scholar] [CrossRef]
- Savaloni, H.; Taherizadeh, A.; Zendehnam, A. Residual stress and structural characteristics in Ti and Cu sputtered films on glass substrates at different substrate temperatures and film thickness. Phys. B 2004, 349, 44–55. [Google Scholar] [CrossRef]
- Ghidelli, M.; Gravier, S.; Blandin, J.J.; Djemia, P.; Mompiou, F.; Abadias, G.; Raskin, J.P.; Pardoen, T. Extrinsic mechanical size effects in thin ZrNi metallic glass films. Acta Mater. 2015, 90, 232–241. [Google Scholar] [CrossRef]
- Ghidelli, M.; Idrissi, H.; Gravier, S.; Blandin, J.J.; Raskin, J.P.; Schryvers, D.; Pardoen, T. Homogeneous flow and size dependent mechanical behavior in highly ductile Zr65Ni35 metallic glass films. Acta Mater. 2017, 131, 246–259. [Google Scholar] [CrossRef]
- Apreutesei, M.; Steyer, P.; Joly-Pottuz, L.; Billard, A.; Qiao, J.; Cardinal, S.; Sanchette, F.; Pelletier, J.M.; Esnouf, C. Microstructural, thermal and mechanical behavior of co-sputtered binary Zr-Cu thin film metallic glasses. Thin Solid Films 2014, 561, 53–59. [Google Scholar] [CrossRef]
- Khobragade, N.; Sikdar, K.; Kumar, B.; Roy, D. Effect of annealing on microstructure, grain growth and hardness of nanocrystalline Cu–Zr alloy prepared by cryogenic ball milling. J. Mater. Sci. Res. 2018, 7, 69–77. [Google Scholar] [CrossRef]
- Sun, H.L.; Song, Z.X.; Ma, F.; Zhan, J.M.; Xu, K.W. Microstructure, formation mechanism and compression plasticity of regularly faceted Cu particles. Scripta Mater. 2009, 60, 305–308. [Google Scholar] [CrossRef]
- Ma, F.; Sun, H.L.; Zhan, J.M.; Xu, K. Self-formation of single-crystal metal particles driven by inhomogeneous stress in thin films. Thin Solid Films 2011, 519, 5188–5193. [Google Scholar] [CrossRef]
- Lahiri, S.K. Stress relief and hillock formation in thin lead films. J. Appl. Phys. 1970, 41, 3172–3176. [Google Scholar] [CrossRef]
- Stoney, G.G. The tension of metallic films deposited by electrolysis. Proc. Royal Soc. London A 1909, 82, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Northwood, D.O.; London, I.M.; Bahen, L.E. Elastic constants of Zirconium alloys. J. Nucl. Mater. 1975, 55, 299–310. [Google Scholar] [CrossRef]
- Chaudhari, P. Hillock growth in thin films. J. Appl. Phys. 1974, 45, 4339–4346. [Google Scholar] [CrossRef]
- Kim, D.K.; Nix, W.D.; Deal, M.D.; Plummer, J.D. Creep-controlled diffusional hillock formation in blanket aluminum thin films as a mechanism of stress relaxation. J. Mater. Res. 2000, 15, 1709–1718. [Google Scholar] [CrossRef]
- Hwang, S.J.; Nix, W.D.; Joo, Y.C. A model for hillock growth in Al thin films controlled by plastic deformation. Acta Mater. 2007, 55, 5297–5301. [Google Scholar] [CrossRef]
- Berla, A.; Joo, Y.C.; Nix, W.D. A model for power law creep controlled hillock growth. Mater. Sci. Eng. A 2008, 488, 594–600. [Google Scholar] [CrossRef]
- Huang, X.X.; Sun, H.L.; Wang, G.X.; Stock, H.R. Self-formation of Ag particles/Ag-Zr alloy films on flexible polyimide as SERS substrates. Appl. Surf. Sci. 2019, 487, 1341–1347. [Google Scholar] [CrossRef]
Sample | Film Thickness (nm) | Zr Content (Atomic Atom%) |
---|---|---|
Cu–Zr bulk alloy | 1.1 | |
Cu–Zr alloy thin film | 50 | 7.3 |
225 | 17.1 | |
420 | 0 | |
7.3 | ||
12.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Huang, X.; Lian, X.; Wang, G. Discrepancies in the Microstructures of Annealed Cu–Zr Bulk Alloy and Cu–Zr Alloy Films. Materials 2019, 12, 2467. https://doi.org/10.3390/ma12152467
Sun H, Huang X, Lian X, Wang G. Discrepancies in the Microstructures of Annealed Cu–Zr Bulk Alloy and Cu–Zr Alloy Films. Materials. 2019; 12(15):2467. https://doi.org/10.3390/ma12152467
Chicago/Turabian StyleSun, Haoliang, Xiaoxue Huang, Xinxin Lian, and Guangxin Wang. 2019. "Discrepancies in the Microstructures of Annealed Cu–Zr Bulk Alloy and Cu–Zr Alloy Films" Materials 12, no. 15: 2467. https://doi.org/10.3390/ma12152467
APA StyleSun, H., Huang, X., Lian, X., & Wang, G. (2019). Discrepancies in the Microstructures of Annealed Cu–Zr Bulk Alloy and Cu–Zr Alloy Films. Materials, 12(15), 2467. https://doi.org/10.3390/ma12152467