Improving Mechanical Properties and Reaction to Fire of EVA/LLDPE Blends for Cable Applications with Melamine Triazine and Bentonite Clay
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology
3.2. Rheological Properties
3.3. Thermal Stability
3.4. Flammability
3.5. Burning Behavior under Forced Flaming Combustion
3.6. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meinier, R.; Sonnier, R. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J. Hazard. Mater. 2018, 135, 3069–3083. [Google Scholar] [CrossRef] [PubMed]
- Martinka, J.; Rantuch, P.; Sulová, J.; Martinka, F. Assessing the fire risk of electrical cables using a cone calorimeter. J. Therm. Anal. Calorim. 2019, 342, 306–316. [Google Scholar] [CrossRef]
- Girardin, B.; Fontaine, G.; Duquesne, S.; Försth, M.; Bourbigot, S. Characterization of Thermo-Physical Properties of EVA/ATH: Application to Gasification Experiments and Pyrolysis Modeling. Materials 2015, 8, 7837–7863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, A.B.; Wilkie, C.A. Practical issues and future trends in polymer nanocomposite flammability research. In Flame Retardant Polymer Nanocomposites; Morgan, A.B., Wilkie, C.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 355–356. [Google Scholar]
- Kiliaris, P.; Papaspyrides, C.D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35, 902–958. [Google Scholar] [CrossRef]
- Zhang, J.; Hereid, J.; Hagen, M.; Bakirtzis, D.; Delichatsios, M.A.; Fina, A.; Castrovinci, A.; Camino, G.; Samyn, F.; Bourbigot, S. Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVAandLDPE. Fire Saf. J. 2009, 44, 504–513. [Google Scholar] [CrossRef]
- Beyer, G. Flame Retardant Properties of EVA-nanocomposites and Improvements by Combination of Nanofillers with Aluminium Trihydrate. Fire Mater. 2001, 25, 193–197. [Google Scholar] [CrossRef]
- Cárdenas, M.A.; García-López, D.; Gobernado-Mitre, I.; Merino, J.C.; Pastor, J.M.; de D. Martínez, J.; Barbeta, J.; Calveras, D. Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites—Effect of particle size and surface treatment of ATH filler. Polym. Degrad. Stab. 2008, 93, 2032–2037. [Google Scholar]
- Kuila, T.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Functionalized-graphene/ethylene vinyl acetate co-polymer composites for improved mechanical and thermal properties. Polym. Test. 2012, 31, 282–289. [Google Scholar] [CrossRef]
- Beyer, G. Flame retardant properties of organoclays and carbon nanotubes and their combination with alumina trihydrate. In Flame Retardant Polymer Nanocomposites; Morgan, A.B., Wilkie, C.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 163–164. [Google Scholar]
- Sauerwein, R. Mineral filler flame retardants. In Non-Halogenated Flame Retardant Handbook; Morgan, A.B., Wilkie, C.A., Eds.; Scrivener Publishing LLC: Salem, MA, USA, 2014; pp. 117–119. [Google Scholar]
- Xu, B.; Ma, W.; Bi, X.; Shao, L.; Qian, L. Synergistic Effects of Nano-zinc Oxide on Improving the Flame Retardancy of EVA Composites with an Efficient Triazine-Based Charring Agent. J. Polym. Environ. 2019, 27, 1127–1140. [Google Scholar] [CrossRef]
- Feng, C.; Liang, M.; Jiang, J.; Liu, H.; Huang, J. Synergistic effect of ammonium polyphosphate and triazine-based charring agent on the flame retardancy and combustion behavior of ethylene-vinyl acetate copolymer. J Anal. Appl. Pyrolysis 2016, 119, 259–269. [Google Scholar] [CrossRef]
- Enescu, D.; Frache, A.; Lavaselli, M.; Monticelli, O.; Marino, F. Novel phosphorous-nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene. Polym. Degrad. Stab. 2013, 98, 297–305. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Ni, A.; Ding, A.; Han, X.; Sun, Z. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites. Materials 2018, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Parbhakar, A.; Cuadros, J.; Sephton, M.A.; Dubbin, W.; Coles, B.J.; Weiss, D. Adsorption of L-lysine on montmorillonite. Coll. Surf. A Physicochem. Eng. Asp. 2007, 307, 142–149. [Google Scholar] [CrossRef]
- Cuadros, J.; Aldega, L.; Vetterlein, J.; Drickamer, K.; Dubbin, W. Reactions of lysine with montmorillonite at 80 °C: Implications for optical activity, H+ transfer and lysine-montmorillonite binding. J. Colloid Interface Sci. 2009, 333, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Kitadai, N.; Yokoyama, T.; Nakashima, S. In situ ATR-IR investigation of L-lysine adsorption on montmorillonite. J. Colloid Interface Sci. 2009, 338, 395–401. [Google Scholar] [CrossRef]
- Moly, K.A.; Bhagawan, S.S.; Groeninckx, G.; Thomas, S. Correlation Between the Morphology and Dynamic Mechanical Properties of Ethylene Vinyl Acetate/Linear Low-Density Polyethylene Blends: Effects of the Blend Ratio and Compatibilization. J. Appl. Polym. Sci. 2006, 100, 4526–4538. [Google Scholar] [CrossRef]
- Utracki, L.A. Compatibilization of Polymer Blends. Can. J. Chem. Eng. 2002, 80, 1008–1016. [Google Scholar] [CrossRef] [Green Version]
- Cogen, J.M.; Lin, T.S.; Whaley, P.D. Material Design for Fire Safety in Wire and Cable Applications. In Fire Retardacy of Polymeric Materials, 2nd ed.; Wilkie, C.A., Morgan, A.B., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 789–792. [Google Scholar]
- Dennis, H.R.; Hunter, D.L.; Chang, D.; Kim, S.; White, J.L.; Cho, J.W.; Paul, D.R. Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocompostes. Polymer 2001, 42, 9513–9522. [Google Scholar] [CrossRef]
- Standard Test Method for Measuring the Comparative Burning Characteristics of Solid Plastics in a Vertical Position; ASTM D3801-19; ASTM International: West Conshohocken, PA, USA, 2019.
- Standard Test Method for Tensile Properties of Plastics; ASTM D638; ASTM International: West Conshohocken, PA, USA, 2014.
- Cser, F.; Jollands, M.; White, P.; Bhattacharya, S. Miscibility studies on cross-linked EVA/LLDPE blends by TMDSC. J. Therm. Anal. Calorim. 2002, 70, 651–662. [Google Scholar] [CrossRef]
- Khonakdar, H.A.; Jafari, S.H.; Yavari, A.; Asadinezhad, A.; Wagenknecht, U. Rheology, Morphology and Estimation of Interfacial Tension of LDPE/EVA and HDPE/EVA Blends. Polym. Bull. 2005, 54, 75–84. [Google Scholar] [CrossRef]
- Ma, Y.; Qi, F.; Chen, M.; Chen, X.; Qin, J.; Tang, M. Study on Viscoelastic, Crystallization, and Mechanical Properties of HDPE/EVA/Mg(OH)2 Composites. Polym. Compos. 2017, 38, 1221–1226. [Google Scholar] [CrossRef]
- Salehiyan, R.; Ray, S.S.; Stadler, F.J.; Ojijo, V. Rheology–Microstructure Relationships in Melt-Processed Polylactide/Poly(vinylidene Fluoride) Blends. Materials 2018, 11, 2450. [Google Scholar] [CrossRef] [PubMed]
- Bayram, H.; Önal, M.; Yılmaz, H.; Sarıkaya, Y. Thermal analysis of a white calcium bentonite. J. Therm. Anal. Calorim. 2010, 101, 73–879. [Google Scholar] [CrossRef]
- Ursu, A.V.; Jinescu, G.; Gros, F.; Nistor, I.D.; Miron, N.D.; Lisa, G.; Silion, M.; Djelveh, G.; Azzouz, A. Thermal and chemical stability of Romanian bentonite. J. Therm. Anal. Calorim. 2011, 106, 965–971. [Google Scholar] [CrossRef]
- Costa, L.; Camino, G.; Luda di Cortemiglia, M.P. Mechanism of thermal degradation of fire-retardant melamine salts. In Fire and Polymers Hazards Identification and Prevention; Nelson, G.L., Ed.; American Chemical Society: Washington, DC, USA, 1990; pp. 211–213. [Google Scholar]
- Alongi, J.; Di Blasio, A.; Cuttica, F.; Carosio, F.; Malucelli, G. Flame Retardant Properties of Ethylene Vinyl Acetate Copolymers Melt-Compounded with Deoxyribonucleic Acid in the Presence of a-cellulose or beta-cyclodextrins. Curr. Org. Chem. 2014, 18, 1651–1660. [Google Scholar] [CrossRef]
- Zanetti, M.; Camino, G.; Thomann, R.; Mülhaupt, R. Synthesis and thermal behaviour of layered silicate-EVA nanocomposites. Polymer 2001, 42, 4501–4507. [Google Scholar] [CrossRef]
- Riva, A.; Zanetti, M.; Braglia, M.; Camino, G.; Falqui, L. Thermal degradation and rheological behaviour of EVA/montmorillonite nanocomposites. Polym. Degrad. Stab. 2002, 77, 299–304. [Google Scholar] [CrossRef]
- Zanetti, M.; Bracco, P.; Costa, L. Thermal degradation behaviour of PE/clay nanocomposites. Polym. Degrad. Stab. 2004, 85, 657–665. [Google Scholar] [CrossRef]
- Sanchez-Olivares, G.; Sanchez-Solis, A.; Calderas, F.; Medina-Torres, L.; Herrera-Valencia, E.E.; Castro-Aranda, J.I.; Manero, O.; Di Blasio, A.; Alongi, J. Flame retardant high density polyethylene optimized by on-line ultrasound extrusion. Polym. Degrad. Stab. 2013, 98, 2153–2160. [Google Scholar] [CrossRef]
- Camino, G.; Maffezzoli, A.; Braglia, M.; De Lazzaro, M.; Zammarano, M. Effect of hydroxides and hydroxycarbonate structure on fire retardant effectiveness and mechanical properties in ethylene-vinyl acetate copolymer. Polym. Degrad. Stab. 2001, 74, 457–464. [Google Scholar] [CrossRef]
- Hoffendahl, C.; Fontaine, G.; Duquesne, S.; Taschner, F.; Mezger, M.; Bourbigot, S. The combination of aluminum trihydroxide ATH) and melamine borate (MB) as fire retardant additives for elastomeric ethylene vinyl acetate (EVA). Polym. Degrad. Stab. 2015, 115, 77–88. [Google Scholar] [CrossRef]
- Yang, W.; Hu, Y.; Tai, Q.; Lu, H.; Song, L.; Yuen, R.K.K. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles. Compos. Part A Appl. Sci. Manuf. 2011, 42, 794–800. [Google Scholar] [CrossRef]
- Yang, W.; Kan, Y.; Song, L.; Hu, Y.; Lu, H.; Yuen, R.K.K. Effect of organo-modified montmorillonite on flame retardant poly(1,4-butylene terephthalate) composites. Polym. Adv. Technol. 2011, 22, 2564–2570. [Google Scholar] [CrossRef]
- Sanchez-Olivares, G.; Sanchez-Solis, A.; Calderas, F.; Medina-Torres, L.; Herrera-Valencia, E.E.; Rivera-Gonzaga, A.; Manero, O. Extrusion with Ultrasound Applied on Intumescent Flame-Retardant Polypropylene. Polym. Eng. Sci. 2013, 53, 2018–2026. [Google Scholar] [CrossRef]
Sample | ATH [phr] * | TRZ [phr] | Clay [phr] |
---|---|---|---|
E-PE | - | - | - |
E-PE/185ATH | 185 | - | - |
E-PE/160ATH | 160 | - | - |
E-PE/120ATH | 120 | - | - |
E-PE/120ATH/20TRZ | 120 | 20 | - |
E-PE/120ATH/15TRZ | 120 | 15 | - |
E-PE/120ATH/10TRZ | 120 | 10 | - |
E-PE/120ATH/15TRZ/1CLAY | 120 | 15 | 1 |
E-PE/120ATH/15TRZ/3CLAY | 120 | 15 | 3 |
E-PE/120ATH/15TRZ/5CLAY | 120 | 15 | 5 |
E-PE/120ATH/10TRZ/1CLAY | 120 | 10 | 1 |
E-PE/120ATH/10TRZ/3CLAY | 120 | 10 | 3 |
E-PE/120ATH/10TRZ/5CLAY | 120 | 10 | 5 |
Sample | Argon | Air | ||||||
---|---|---|---|---|---|---|---|---|
* Tmax [°C] | Deriv. Mass [%/°C] | Residue at 800 °C [%] | * Tmax 1 [°C] | Deriv. Mass 1 [%/°C] | * Tmax 2 [°C] | Deriv. Mass 2 [%/°C] | Residue at 800 °C [%] | |
E-PE | 467 | 2.27 | 0.0 | 346 | 0.67 | 410 | 1.69 | 1.5 |
E-PE/120ATH | 472 | 1.02 | 37.2 | 320 | 0.35 | 385 | 0.48 | 40.2 |
E-PE/120ATH/10TRZ | 476 | 1.13 | 35.2 | 318 | 0.31 | 470 | 0.42 | 32.4 |
E-PE/120ATH/10TRZ/5clay | 476 | 1.06 | 34.8 | 315 | 0.33 | 467 | 0.49 | 34.9 |
Sample | t 1 ± σ | t 2 ± σ | UL94 Classification | Burning Characteristics |
---|---|---|---|---|
E-PE | >60 | - | n.c. * | Intense melt dripping |
E-PE/185ATH | - | 3 ± 1 | V0 | No melt dripping |
E-PE/160ATH | - | 85 ± 26 | n.c. | Moderated melt dripping |
E-PE/120ATH | - | 57 ± 35 | n.c. | Flaming droplets |
E-PE/120ATH/20TRZ | - | 3 ± 1 | V0 | No melt dripping |
E-PE/120ATH/15TRZ | 41 ± 78 | 105 ± 30 | n.c. | Intense melt dripping |
E-PE/120ATH/10TRZ | 7 ± 8 | 77 ± 40 | n.c. | Intense melt dripping |
E-PE/120ATH/15TRZ/1CLAY | - | 7 ± 5 | V1 | No melt dripping |
E-PE/120ATH/15TRZ/3CLAY | - | 4 ± 2 | V0 | No melt dripping |
E-PE/120ATH/15TRZ/5CLAY | - | 4 ± 2 | V0 | No melt dripping |
E-PE/120ATH/10TRZ/1CLAY | - | 83 ± 39 | n.c. | Intense melt dripping |
E-PE/120ATH/10TRZ/3CLAY | - | 9 ± 3 | V1 | No melt dripping |
E-PE/120ATH/10TRZ/5CLAY | - | 4 ± 3 | V0 | No melt dripping |
Sample | TTI [s] | pkHRR [kW/m2] | THR [MJ/m2] | MARHE [kW/m2] | TSR [m2/m2] | Residue [%] |
---|---|---|---|---|---|---|
E-PE | 62 ± 4 | 850 ± 59 | 110 ± 1 | 379 ± 15 | 1178 ± 33 | 0 |
E-PE/185ATH | 111 ± 5 | 186 ± 2 | 77 ± 4 | 112 ± 2 | 570 ± 53 | 44 ± 1 |
E-PE/120ATH | 107 ± 2 | 281 ± 14 | 80 ± 9 | 155 ± 5 | 907 ± 62 | 37 ± 1 |
E-PE/120ATH/20TRZ | 98 ± 3 | 210 ± 5 | 88 ± 1 | 109 ± 4 | 725 ± 44 | 35 ± 1 |
E-PE/120ATH/15TRZ | 99 ± 5 | 237 ± 13 | 86 ± 5 | 147 ± 9 | 951 ± 68 | 33 ± 1 |
E-PE/120ATH/10TRZ | 103 ± 4 | 223 ± 15 | 83 ± 5 | 138 ± 10 | 945 ± 42 | 35 ± 1 |
E-PE/120ATH/15TRZ/3clay | 101 ± 4 | 212 ± 12 | 86 ± 3 | 116 ± 3 | 843 ± 47 | 35 ± 1 |
E-PE/120ATH/10TRZ/5clay | 101 ± 3 | 218 ± 9 | 82 ± 6 | 133 ± 2 | 806 ± 43 | 36 ± 1 |
Sample | Young’s Modulus [MPa] | Tensile Strength [MPa] | Elongation at Break [%] | Tenacity [MPa] |
---|---|---|---|---|
E-PE | 27 ± 1 | 7.0 ± 0.3 | 478 ± 26 | 27 ± 2 |
E-PE/185ATH | 92 ± 5 | 13.0 ± 0.4 | 101 ± 8 | 11 ± 1 |
E-PE/160ATH | 68 ± 1 | 12.0 ± 0.2 | 147 ± 9 | 14 ± 1 |
E-PE/120ATH | 58 ± 1 | 10.0 ± 0.2 | 165 ± 11 | 13 ± 1 |
E-PE/120ATH/20TRZ | 58 ± 2 | 7.0 ± 0.4 | 115 ± 6 | 6 ± 1 |
E-PE/120ATH/15TRZ | 61 ± 2 | 11.0 ± 0.1 | 180 ± 7 | 16 ± 1 |
E-PE/120ATH/10TRZ | 68 ± 2 | 12.0 ± 0.4 | 167 ± 9 | 16 ± 1 |
E-PE/120ATH/15TRZ/1CLAY | 69 ± 1 | 11.0 ± 0.2f | 146 ± 11 | 13 ± 1 |
E-PE/120ATH/15TRZ/3CLAY | 74 ± 3 | 11.0 ± 0.2 | 137 ± 4 | 12 ± 0 |
E-PE/120ATH/15TRZ/5CLAY | 77 ± 2 | 11.0 ± 0.3 | 113 ± 5 | 10 ± 1 |
E-PE/120ATH/10TRZ/1CLAY | 74 ± 2 | 12.0 ± 0.4 | 130 ± 9 | 13 ± 1 |
E-PE/120ATH/10TRZ/3CLAY | 70 ± 2 | 12.0 ± 0.3 | 142 ± 6 | 13 ± 1 |
E-PE/120ATH/10TRZ/5CLAY | 70 ± 1 | 10.0 ± 0.2 | 137 ± 8 | 11 ± 1 |
Sample | Formulation Composition | * Cost of Formulation/kg of E-PE [USD/kg] | * Cost of Formulation/m3 of E-PE [USD/m3] |
---|---|---|---|
E-PE/185ATH | 185 phr ATH | 7.3 | 6.8 |
E-PE/120ATH/20TRZ | 120 phr ATH+20 phr TRZ | 7.7 | 7.1 |
E-PE/120ATH/15TRZ/3clay | 120 phr ATH+15 phr TRZ+3 clay | 7.1 | 6.6 |
E-PE/120ATH/10TRZ/5clay | 120 phr ATH+10 phr TRZ+5 clay | 6.4 | 5.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Olivares, G.; Sanchez-Solis, A.; Manero, O.; Pérez-Chávez, R.; Jaramillo, M.; Alongi, J.; Carosio, F. Improving Mechanical Properties and Reaction to Fire of EVA/LLDPE Blends for Cable Applications with Melamine Triazine and Bentonite Clay. Materials 2019, 12, 2393. https://doi.org/10.3390/ma12152393
Sanchez-Olivares G, Sanchez-Solis A, Manero O, Pérez-Chávez R, Jaramillo M, Alongi J, Carosio F. Improving Mechanical Properties and Reaction to Fire of EVA/LLDPE Blends for Cable Applications with Melamine Triazine and Bentonite Clay. Materials. 2019; 12(15):2393. https://doi.org/10.3390/ma12152393
Chicago/Turabian StyleSanchez-Olivares, Guadalupe, Antonio Sanchez-Solis, Octavio Manero, Ricardo Pérez-Chávez, Mario Jaramillo, Jenny Alongi, and Federico Carosio. 2019. "Improving Mechanical Properties and Reaction to Fire of EVA/LLDPE Blends for Cable Applications with Melamine Triazine and Bentonite Clay" Materials 12, no. 15: 2393. https://doi.org/10.3390/ma12152393
APA StyleSanchez-Olivares, G., Sanchez-Solis, A., Manero, O., Pérez-Chávez, R., Jaramillo, M., Alongi, J., & Carosio, F. (2019). Improving Mechanical Properties and Reaction to Fire of EVA/LLDPE Blends for Cable Applications with Melamine Triazine and Bentonite Clay. Materials, 12(15), 2393. https://doi.org/10.3390/ma12152393