Evaluation of a TEM based Approach for Size Measurement of Particulate (Nano)materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Evaluation of Sample Preparation
3.2. Intra-Laboratory Validation Study
3.2.1. Limit of Detection and Working Range
3.2.2. Selectivity
3.2.3. Uncertainty Budget
3.2.4. Trueness
3.2.5. Robustness and Ruggedness
3.3. Inter-Laboratory Validation Study
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nie, S.; Xing, Y.; Kim, G.J.; Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257–288. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer 2005, 5, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Leucuta, S.E. Nanotechnology for delivery of drugs and biomedical applications. Curr. Clin. Pharmacol. 2010, 5, 257–280. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Sprando, R.L. Application of nanotechnology in cosmetics. Pharm. Res. 2010, 27, 1746–1749. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, P.R.; Philbert, M.; Vu, T.Q.; Huang, Q.; Kokini, J.L.; Saos, E.; Chen, H.; Peterson, C.M.; Friedl, K.E.; McDade-Ngutter, C. Nanotechnology research: Applications in nutritional sciences. J. Nutr. 2009, 140, 119–124. [Google Scholar] [CrossRef]
- Duncan, T.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 2011, 363, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Sozer, N.; Kokini, J.L. Nanotechnology and its applications in the food sector. Trends Biotechnol. 2009, 27, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, R. Nanotechnology applications in food and food processing: Innovative green approaches, opportunities and uncertainties for global market. Int. J. Green Nanotechnol. Phys. Chem. 2010, 1, 72–96. [Google Scholar] [CrossRef]
- Bhushan, B. Springer Handbook of Nanotechnology; Springer: Berlin, Germany, 2017. [Google Scholar]
- Khanna, A. Nanotechnology in high performance paint coatings. Asian J. Exp. Sci. 2008, 21, 25–32. [Google Scholar]
- Sawhney, A.P.S.; Condon, B.; Singh, K.V.; Pang, S.S.; Li, G.; Hui, D. Modern applications of nanotechnology in textiles. Text. Res. J. 2008, 78, 731–739. [Google Scholar] [CrossRef]
- Miyazaki, K.; Islam, N. Nanotechnology systems of innovation—An analysis of industry and academia research activities. Technovation 2007, 27, 661–675. [Google Scholar] [CrossRef]
- Kozhukharov, V.; Machkova, M. Nanomaterials and nanotechnology: European initiatives, status and strategy. J. Chem. Technol. Metall. 2013, 48, 3–11. [Google Scholar]
- Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial (2011/696/EU). 2011. Available online: https://ec.europa.eu/research/industrial_technologies/pdf/policy/commission-recommendation-on-the-definition-of-nanomater-18102011_en.pdf (accessed on 5 July 2019).
- Rauscher, H.; Rasmussen, K.; Sokull-Klüttgen, B. Regulatory Aspects of Nanomaterials in the EU. Chem. Ing. Tech. 2017, 89, 224–231. [Google Scholar] [CrossRef]
- Regulation EC 1333/2008 of the European Parliment and of the Council on Food Additives. 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32008R1333 (accessed on 5 July 2019).
- Regulation No 1169/2011 of the European Parliament and of the Council of 25 October 2011. 2011. Available online: https://www.fsai.ie/uploadedFiles/Reg1169_2011.pdf (accessed on 5 July 2019).
- Regulation 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R2283 (accessed on 5 July 2019).
- Commission Regulation No 10-2011 on Plastic Materials and Articles Intended to Come into Contact with Food. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R0010 (accessed on 5 July 2019).
- Commission Regulation No 450/2009 of 29 May 2009 on Active and Intelligent Materials and Articles Intended to Come into Contact with Food. 2009. Available online: website https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009R0450 (accessed on 5 July 2019).
- Regulation No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products. 2012. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:167:0001:0123:EN:PDF (accessed on 5 July 2019).
- Regulation No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. 2009. Available online: https://ec.europa.eu/health/sites/health/files/endocrine_disruptors/docs/cosmetic_1223_2009_regulation_en.pdf website (accessed on 5 July 2019).
- Proposal for a Regulation of the European Parliament and of the Council on Medical Devices, and Amending Directive 2001/83/EC, Regulation No 178/2002 and Regulation No 1223/2009, COM(2012) 542 Final. 2012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012PC0542 (accessed on 5 July 2019).
- Linsinger, T.; Roebben, G.; Gilliland, D.; Calzolai, L.; Rossi, F.; Gibson, P.; Klein, C. Requirements on Measurements for the Implementation of the European Commission Definition of the Term ‘Nanomaterial’; Publications Office of the European Union: Brussels, Belgium, 2012. [Google Scholar]
- Linsinger, T.; Roebben, G.; Solans, C.; Ramsch, R. Reference materials for measuring the size of nanoparticles. TrAC Trends Anal. Chem. 2011, 30, 18–27. [Google Scholar] [CrossRef]
- López-Serrano, A.; Olivas, R.M.; Landaluze, J.S.; Cámara, C. Nanoparticles: A global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal. Methods 2014, 6, 38–56. [Google Scholar] [CrossRef]
- Stefaniak, A.B.; Hackley, V.A.; Roebben, G.; Ehara, K.; Hankin, S.; Postek, M.T.; Lynch, I.; Fu, W.E.; Linsinger, T.P.; Thunemann, A.F. Nanoscale reference materials for environmental, health and safety measurements: Needs, gaps and opportunities. Nanotoxicology 2013, 7, 1325–1337. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.; Couteau, O.; Franks, K.; Kestens, V.; Roebben, G.; Lamberty, A.; Linsinger, T. Validation of dynamic light scattering and centrifugal liquid sedimentation methods for nanoparticle characterisation. Adv. Powder Technol. 2011, 22, 766–770. [Google Scholar] [CrossRef]
- Braun, A.; Franks, K.; Kestens, V.; Roebben, G.; Lamberty, A.; Linsinger, T. Certified Reference Material ERM®—FD100: Certification of Equivalent Spherical Diameters of Silica Nanoparticles in Water; European Union: Luxembourg, Luxembourg, 2011. [Google Scholar]
- Franks, K.; Braun, A.; Charoud-Got, J.; Couteau, O.; Kestens, V.; Lamberty, A.; Linsinger, T.; Roebben, G. Certified Reference Material ERM®-FD304: Certification of the Equivalent Spherical Diameters of Silica Nanoparticles in Aqueous Solution; European Union: Luxembourg, Luxembourg, 2012. [Google Scholar]
- De Temmerman, P.J.; Verleysen, E.; Lammertyn, J.; Mast, J. Size measurement uncertainties of near-monodisperse, near-spherical nanoparticles using transmission electron microscopy and particle-tracking analysis. J. Nanopart. Res. 2014, 16, 1–17. [Google Scholar] [CrossRef]
- Kestens, V.; Bozatzidis, V.; De Temmerman, P.-J.; Ramaye, Y.; Roebben, G. Validation of a particle tracking analysis method for the size determination of nano-and microparticles. J. Nanopart. Res. 2017, 19, 271. [Google Scholar] [CrossRef]
- Loeschner, K.; Navratilova, J.; Grombe, R.; Linsinger, T.P.; Købler, C.; Mølhave, K.; Larsen, E.H. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection. Food Chem. 2015, 181, 78–84. [Google Scholar] [CrossRef]
- NanoDefine. Development of an Integrated Approach Based on Validated and Standardized Methods to Support the Implementation of the EC Recommendation for a Definition of Nanomaterial. FP7-NMP-2013-LARGE-7: NMP.2013.1.4-3 2013-2016. Available online: www.nanodefine.eu (accessed on 5 July 2019).
- NANoREG. Regulatory Testing of Nanomaterials, A Common European Approach to the Regulatory Testing of Nanomaterials. EC Large-Scale Integrating Project FP7 2013-2017: NMP.2012.1.3-3 2013-2017. Available online: www.nanoreg.eu (accessed on 5 July 2019).
- Verleysen, E.; Van Doren, E.; Waegeneers, N.; De Temmerman, P.J.; Abi Daoud Francisco, M.; Mast, J. TEM and SP-ICP-MS analysis of the release of silver nanoparticles from decoration of pastry. J. Agric. Food Chem. 2015, 63, 3570–3578. [Google Scholar] [CrossRef] [PubMed]
- Von der Kammer, F.; Ferguson, P.L.; Holden, P.A.; Masion, A.; Rogers, K.R.; Klaine, S.J.; Koelmans, A.A.; Horne, N.; Unrine, J.M. Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32–49. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion: Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J. 2011, 9, 2140. [Google Scholar] [CrossRef]
- Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; Ockleford, C.; Ricci, A. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J. 2018, 16. [Google Scholar] [CrossRef]
- Williams, D.; Amman, M.; Autrup, H.; Bridges, J.; Cassee, F.; Donaldson, K.; Fattal, E.; Janssen, C.; De Jong, W.; Jung, T. The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. In Proceedings of the European Commission Health and Consumer Protection Directorate General by the Scientific Committee on Emerging and Newly Identified Health Risks, Brussels, Belgium, 10 March 2006. [Google Scholar]
- Lee, S.; Bi, X.; Reed, R.B.; Ranville, J.F.; Herckes, P.; Westerhoff, P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ. Sci. Technol. 2014, 48, 10291–10300. [Google Scholar] [CrossRef] [PubMed]
- De Temmerman, P.-J.; Verleysen, E.; Lammertyn, J.; Mast, J. Semi-automatic size measurement of primary particles in aggregated nanomaterials by transmission electron microscopy. Powder Technol. 2014, 2061, 191–200. [Google Scholar] [CrossRef]
- Wagner, T. Available online: https://zenodo.org/record/820296#.XAZ9XttKi00 (accessed on 5 July 2019).
- De Temmerman, P.J.; Lammertyn, J.; Ketelaere, B.; Kestens, V.; Roebben, G.; Verleysen, E.; Mast, J. Measurement uncertainties of size, shape, and surface measurements using transmission electron microscopy of near-monodisperse, near-spherical nanoparticles. J. Nanopart. Res. 2013, 16, 1–22. [Google Scholar] [CrossRef]
- Motzkus, C.; Macé, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A.; Dirscherl, K.; Hodoroaba, V.D.; Popov, I.; Popov, O.; Kuselman, I.; et al. Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: An interlaboratory comparison study. J. Nanopart. Res. 2013, 15, 1–36. [Google Scholar] [CrossRef]
- Rice, S.B.; Chan, C.; Brown, S.C.; Eschbach, P.; Han, L.; Ensor, D.S.; Stefaniak, A.B.; Bonevich, J.; Vladár, A.E.; Walker, A.R.H. Particle size distributions by transmission electron microscopy: An interlaboratory comparison case study. Metrologia 2013, 50, 663. [Google Scholar] [CrossRef]
- Bell, N.C.; Minelli, C.; Tompkins, J.; Stevens, M.M.; Shard, A.G. Emerging techniques for submicrometer particle sizing applied to Stober silica. Langmuir 2012, 28, 10860–10872. [Google Scholar] [CrossRef]
- Anderson, W.; Kozak, D.; Coleman, V.A.; Jämting, Å.K.; Trau, M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J. Colloid Interface Sci. 2013, 405, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Tuoriniemi, J.; Johnsson, A.-C.J.; Holmberg, J.P.; Gustafsson, S.; Gallego-Urrea, J.A.; Olsson, E.; Pettersson, J.B.; Hassellöv, M. Intermethod comparison of the particle size distributions of colloidal silica nanoparticles. Sci. Technol. Adv. Mater. 2014, 15, 035009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICH Harmonised Tripartite Guideline Prepared within the Third International Conference on Harmonisation of Technical Requirements for the Registration of Pharmaceuticals for Human Use (ICH), Text on Validation of Analytical Procedures. 1994. Available online: https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf (accessed on 5 July 2019).
- Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results (2002/657/EC. 2002. Available online: https://publications.europa.eu/en/publication-detail/-/publication/ed928116-a955-4a84-b10a-cf7a82bad858/language-en (accessed on 5 July 2019).
- Rasmussen, K.; Mast, J.; De Temmerman, P.J.; Verleysen, E.; Waegeneers, N.; Van Steen, F.; Pizzolon, J.C.; De Temmerman, L.; Van Doren, E.; Jensen, K.A.; et al. Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico-Chemical Properties. In EUR 26637; Publications Office of the European Union: Luxembourg, Luxembourg, 2014. [Google Scholar]
- Singh, C.; Friedrichs, S.; Ceccone, G.; Gibson, N.; Jensen, K.A.; Levin, M.; Goenaga Infante, H.; Calander, D.; Rasmussen, K. Cerium Dioxide, NM-211, NM-212, NM-2013. Characterisation and test item preparation. In EUR 26649; Publications Office of the European Union: Luxembourg, Luxembourg, 2014. [Google Scholar]
- Certificate of Analysis from Alfa Aesar. Available online: https://www.alfa.com/en/certs/certs4/46945-L05X007.pdf (accessed on 5 July 2019).
- Roebben, G.; Rasmussen, K.; Kestens, V.; Linsinger, T.P.J.; Rauscher, H.; Emons, H.; Stamm, H. Reference materials and representative test materials: The nanotechnology case. J. Nanopart. Res. 2013, 15, 1455. [Google Scholar] [CrossRef]
- ISO/TS 16195 Guidance for Developing Representative Test Materials Consisting of Nano-objects in Dry Powder Form; International Organization for Standardization: Geneva, Switzerland, 2013.
- Jensen, K.A. The ENPRA dispersion protocol for NANoREG; National Research Centre for the Working Environment: Copenhagen, Denmark, 2014. [Google Scholar]
- Pradhan, S.; Hedberg, J.; Blomberg, E.; Wold, S.; Wallinder, I.O. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 2016, 18, 285. [Google Scholar] [CrossRef] [PubMed]
- Thermo Fisher Scientific, Tecnai on-line help manual—Options. Available online: https://www.ifm.liu.se/materialphysics/thinfilm/Manualer/galadriel/FEI%20manuals/Options.pdf (accessed on 5 July 2019).
- Koeber, R. Guideline for In-House Validation: Development of an Integrated Approach Based on Validated and Standardized Methods to Support the Implementation of the EC Recommendation for a Definition of Nanomaterial; Nanodefine: Geel, Belgium, 2015. [Google Scholar]
- ISO 5725-2:1994 Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 2: Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method; International Organization for Standardization: Geneva, Switzerland, 1994.
- ISO 5725-1: 1994 Accuracy (Trueness and Precision) of Measurement Methods and Results-Part 1: General Principles and Definitions; International Organization for Standardization: Geneva, Switzerland, 1994.
- Appendix D: Guidelines for collaborative Study procedures to validate characteristics of a method of analysis, 17th edn. AOAO Off. Methods Anal. 2002, Appendix D, 1–12.
- Merkus, H.G. Particle Size Measurements: Fundamentals, practice, quality; Springer: Pijnacker, The Netherlands, 2009; p. 533. [Google Scholar]
- ISO 13322-1, Particle Size Analysis—Image Analysis Methods; International Organization for Standardization: Geneva, Switzerland, 2014.
- IJ-NL-Means: Non Local Means 1.4.6. Available online: 10.5281/zenodo.47468 (accessed on 5 July 2019).
- A Non-Local Algorithm for Image Denoising. Available online: 10.1109/CVPR.2005.38 (accessed on 5 July 2019).
- Phansalkar, N.; More, S.; Sabale, A.; Joshi, M. Adaptive local thresholding for detection of nuclei in diversity stained cytology images. In Proceedings of the 2011 International Conference on Communications and Signal Processing, Kerala, India, 10–12 February 2011; pp. 218–220. [Google Scholar]
- Linsinger, T.; Chaudhry, Q.; Dehalu, V.; Delahaut, P.; Dudkiewicz, A.; Grombe, R.; Von der Kammer, F.; Larsen, E.H.; Legros, S.; Loeschner, K. Validation of methods for the detection and quantification of engineered nanoparticles in food. Food Chem. 2013, 138, 1959–1966. [Google Scholar] [CrossRef] [PubMed]
Material | Mag | LOD (nm) | LLOQ (nm) | ULOQ (nm) | FOV (nm × nm) | Mode |
---|---|---|---|---|---|---|
ERM-FD100 | 18,500× | 0.60 | 6.0 | 245.0 | 2450 × 2450 | Default |
ERM-FD100 | 68,000× | 0.16 | 1.6 | 66.0 | 660 × 660 | Default |
ERM-FD304 | 18,500× | 0.60 | 6.0 | 245.0 | 2450 × 2450 | Default |
ERM-FD304 | 68,000× | 0.16 | 1.6 | 66.0 | 660 × 660 | Default |
Gold nanorods | 18,500× | 0.60 | 6.0 | 245.0 | 2450 × 2450 | Irregular WS |
NM-100 | 9300× | 1.17 | 11.7 | 477.7 | 4777 × 4777 | Ellipse fitting |
NM-103 | 30000× | 0.38 | 3.8 | 153.7 | 1537 × 1537 | Single particle |
NM-212 | 30000× | 0.38 | 3.8 | 153.7 | 1537 × 1537 | Single particle |
Material | ERM-FD100 18,500× | ERM-FD100 68,000× | ERM-FD304 18,500× | ERM-FD304 68,000× | ||||||||
Partner | P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 |
Cm (nm) | 17.4 | 17.5 | 17.3 | 18.1 | 18.4 | 17.3 | 22.9 | 23.3 | 22.8 | 23.0 | 23.5 | 23.0 |
sd (nm) | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.3 | 0.7 | 0.3 | 0.3 | 0.5 | 0.4 |
ur (%) | 1.5 | 1.5 | 1.7 | 1.5 | 2.0 | 1.5 | 1.2 | 1.2 | 1.3 | 1.5 | 1.2 | 1.7 |
uday (%) | 1.0 | 1.1 | 0.6 | 1.2 | 1.0 | 1.8 | 0.5 | 2.8 | 0.5 | 0.4 | 1.9 | 0.7 |
uIP (%) | 1.8 | 1.9 | 1.7 | 1.9 | 2.3 | 2.4 | 1.3 | 3.0 | 1.4 | 1.5 | 2.2 | 1.8 |
ucal (%) | 1.0 | 1.0 | 1.0 | 0.2 | 0.2 | 0.2 | 1.0 | 1.0 | 1.0 | 0.2 | 0.2 | 0.2 |
ut (%) | 3.8 | 4.1 | 3.7 | 3.9 | 4.1 | 4.1 | 3.0 | 4.0 | 3.0 | 3.1 | 3.5 | 3.3 |
uc(x) (%) | 4.3 | 4.7 | 4.3 | 4.3 | 4.6 | 4.7 | 3.4 | 5.1 | 3.5 | 3.5 | 4.1 | 3.8 |
Ucx (%) | 8.6 | 9.5 | 8.6 | 8.6 | 9.3 | 9.5 | 6.8 | 10.3 | 7.0 | 6.9 | 8.3 | 7.5 |
Material | Gold nanorods | NM-100 | NM-103 | NM-212 | ||||||||
Partner | P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 |
Cm (nm) | 15.8 | 15.1 | 15.2 | 100 | 103 | 105 | 18.2 | 21.4 | 21.3 | 15.6 | 15.6 | 17.6 |
sd (nm) | 0.5 | 1.0 | 0.7 | 2 | 3 | 2 | 0.4 | 0.7 | 0.4 | 1.0 | 1.4 | 1.1 |
ur (%) | 3.1 | 6.9 | 4.0 | 1.9 | 2.6 | 2.2 | 2.1 | 2.6 | 2.0 | 6.4 | 8.5 | 6.3 |
uday (%) | 1.2 | 2.7 | 1.7 | 0.7 | 0.5 | 0.7 | 1.3 | 1.8 | 0.8 | 2.0 | 3.0 | 0.8 |
uIP (%) | 3.4 | 7.4 | 4.4 | 2.1 | 2.6 | 2.3 | 2.5 | 3.1 | 2.1 | 6.7 | 9.0 | 6.3 |
ucal (%) | 1.0 | 1.0 | 1.0 | 0.8 | 0.8 | 0.8 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
ut (%) | 4.5 | 8.0 | 5.3 | 3.6 | 4.0 | 3.8 | 3.9 | 4.3 | 3.7 | 7.3 | 9.5 | 7.0 |
uc(x) (%) | 5.7 | 10.9 | 6.9 | 4.3 | 4.8 | 4.5 | 4.6 | 5.3 | 4.3 | 9.9 | 13.1 | 9.4 |
Ucx (%) | 11.4 | 21.9 | 13.9 | 8.5 | 9.7 | 9.0 | 9.2 | 10.7 | 8.5 | 19.9 | 26.2 | 18.9 |
Material | Magnification | Cm (nm) | uc(x) (nm) | CCRM (nm) | uCRM (nm) | Δm (nm) | uΔ (nm) | UΔ (nm) |
---|---|---|---|---|---|---|---|---|
ERM-FD100 | 18,500× | 19.2 | 0.9 | 19.4 | 0.7 | 0.2 | 1.1 | 2.3 |
68,000× | 19.4 | 0.8 | 19.4 | 0.7 | 0.0 | 1.1 | 2.1 | |
ERM-FD304 | 18,500× | 25.5 | 1.3 | 27.8 | 0.8 | 2.3 | 1.5 | 3.1 |
68,000× | 24.9 | 1.0 | 27.8 | 0.8 | 2.9 | 1.3 | 2.6 |
Material | uIP P1 (%) | uIP P2 (%) | uIP P3 (%) | uIP TP1 (%) | uIP TP2 (%) |
---|---|---|---|---|---|
ERM-FD100 18,500× | 1.8 | 1.9 | 1.7 | 1.7 | 2.0 |
ERM-FD100 68,000× | 1.9 | 2.3 | 2.4 | 31.7; 1.9 1 | 5.3 |
ERM-FD304 18,500× | 1.3 | 3.0 | 1.4 | 1.4 | 1.4 |
ERM-FD304 68,000× | 1.5 | 2.2 | 1.8 | 6.1 | 6.1 |
Gold nanorods | 3.4 | 7.4 | 4.4 | 29.5; 23.8 1 | 7.2 |
NM-100 | 2.1 | 2.6 | 2.3 | 3.9 | 15.8 |
NM-103 | 2.5 | 3.1 | 2.1 | 6.3 | 2.3 |
NM-212 | 6.7 | 9.0 | 6.3 | 4.4 | 4.5 |
Variable | ERM-FD100 | Gold nanorods | NM-100 | NM-212 |
---|---|---|---|---|
No. of laboratories 1 | 17 | 19 | 18 | 18 |
No. of outlier lab & test used | 1 G–1 C | – | 1 G–1 IG | 1 C |
No. of replicates excluded | 30 | – | 16 | 15 |
Xobs (nm) | 17.4 | 15.93 | 97.4 | 13.7 |
Sr (nm) | 0.3 | 0.7 | 4.7 | 1.0 |
r (nm) | 0.8 | 2.0 | 13.2 | 2.9 |
RSDr (%) | 1.8 | 4.6 | 4.8 | 7.5 |
SR (nm) | 0.3 | 0.8 | 5.7 | 1.8 |
R (nm) | 0.9 | 2.2 | 15.9 | 5.2 |
RSDR (%) | 1.8 | 5.2 | 5.8 | 13.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verleysen, E.; Wagner, T.; Lipinski, H.-G.; Kägi, R.; Koeber, R.; Boix-Sanfeliu, A.; De Temmerman, P.-J.; Mast, J. Evaluation of a TEM based Approach for Size Measurement of Particulate (Nano)materials. Materials 2019, 12, 2274. https://doi.org/10.3390/ma12142274
Verleysen E, Wagner T, Lipinski H-G, Kägi R, Koeber R, Boix-Sanfeliu A, De Temmerman P-J, Mast J. Evaluation of a TEM based Approach for Size Measurement of Particulate (Nano)materials. Materials. 2019; 12(14):2274. https://doi.org/10.3390/ma12142274
Chicago/Turabian StyleVerleysen, Eveline, Thorsten Wagner, Hans-Gerd Lipinski, Ralf Kägi, Robert Koeber, Ana Boix-Sanfeliu, Pieter-Jan De Temmerman, and Jan Mast. 2019. "Evaluation of a TEM based Approach for Size Measurement of Particulate (Nano)materials" Materials 12, no. 14: 2274. https://doi.org/10.3390/ma12142274
APA StyleVerleysen, E., Wagner, T., Lipinski, H.-G., Kägi, R., Koeber, R., Boix-Sanfeliu, A., De Temmerman, P.-J., & Mast, J. (2019). Evaluation of a TEM based Approach for Size Measurement of Particulate (Nano)materials. Materials, 12(14), 2274. https://doi.org/10.3390/ma12142274