Magnetic Particles for Advanced Molecular Diagnosis
Abstract
:1. Introduction
2. Magnetic Particles in Diagnosis
3. Cancer Diagnosis
4. Diagnosis of Infectious Diseases
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Nguyen, T.; Zoëga Andreasen, S.; Wolff, A.; Duong Bang, D. From Lab on a Chip to Point of Care Devices: The Role of Open Source Microcontrollers. Micromachines 2018, 9, 403. [Google Scholar] [CrossRef]
- Vashist, S.K. Point-of-Care Diagnostics: Recent Advances and Trends. Biosensors 2017, 7, 62. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Volceanov, A.; Teleanu, R.I. Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics 2018, 10, 269. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Volceanov, A.; Teleanu, R.I. Contrast Agents Delivery: An Up-to-Date Review of Nanodiagnostics in Neuroimaging. Nanomaterials 2019, 9, 542. [Google Scholar] [CrossRef]
- Spataro, N.; Rodríguez, J.A.; Navarro, A.; Bosch, E. Properties of human disease genes and the role of genes linked to Mendelian disorders in complex disease aetiology. Hum. Mol. Genet. 2017, 26, 489–500. [Google Scholar] [CrossRef]
- Raghavendra, P.; Pullaiah, T. Chapter 1—Cellular and Molecular Diagnostics: An Introduction. In Advances in Cell and Molecular Diagnostics; Raghavendra, P., Pullaiah, T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 1–32. [Google Scholar]
- Jackson, M.; Marks, L.; May, G.H.W.; Wilson, J.B. The genetic basis of disease. Essays Biochem. 2018, 62, 643–723. [Google Scholar] [CrossRef] [Green Version]
- Raghavendra, P.; Pullaiah, T. Chapter 3—Advancements in Genetic Applications for Cellular and Molecular Diagnostics. In Advances in Cell and Molecular Diagnostics; Raghavendra, P., Pullaiah, T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 57–84. [Google Scholar]
- Patrinos, G.P.; Danielson, P.B.; Ansorge, W.J. Chapter 1—Molecular Diagnostics: Past, Present, and Future. In Molecular Diagnostics, 3rd ed.; Patrinos, G.P., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–11. [Google Scholar]
- Turner, S.A.; Tsongalis, G.J. Chapter 4—Automation of the Molecular Diagnostic Laboratory. In Diagnostic Molecular Pathology; Coleman, W.B., Tsongalis, G.J., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 35–46. [Google Scholar]
- Wanger, A.; Chavez, V.; Huang, R.S.P.; Wahed, A.; Actor, J.K.; Dasgupta, A. Chapter 12—Overview of Molecular Diagnostics Principles. In Microbiology and Molecular Diagnosis in Pathology; Wanger, A., Chavez, V., Huang, R., Wahed, A., Dasgupta, A., Actor, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 233–257. [Google Scholar]
- Williams, E.S.; Silverman, L.M. Chapter 30—Molecular Diagnosis of Human Disease. In Molecular Pathology, 2nd ed.; Coleman, W.B., Tsongalis, G.J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 691–707. [Google Scholar]
- Li, T.; Zhang, Z.-j.; Ma, X.; Lv, X.; Xiao, H.; Guo, Q.-n.; Liu, H.-y.; Wang, H.-d.; Wu, D.; Lou, G.-y.; et al. Prenatal diagnosis for a Chinese family with a de novo DMD gene mutation: A case report. Medicine 2017, 96, e8814. [Google Scholar] [CrossRef]
- Raghavendra, P.; Pullaiah, T. Chapter 8—Future of Cellular and Molecular Diagnostics: Bench to Bedside. In Advances in Cell and Molecular Diagnostics; Raghavendra, P., Pullaiah, T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 203–270. [Google Scholar]
- Galkin, O.Y.; Besarab, O.B.; Pysmenna, M.O.; Gorshunov, Y.V.; Dugan, O.M. Modern magnetic immunoassay: Biophysical and biochemical aspects. Regul. Mech. Biosyst. 2017, 9, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Nelan, R.L.; Hayward, M.-K.; Jones, J.L. The growth of molecular diagnostics: Stratified Medicine Programme, the 100,000 Genomes Project and the future. Diagn. Histopathol. 2017, 23, 458–467. [Google Scholar] [CrossRef]
- Morganti, S.; Tarantino, P.; Ferraro, E.; D’Amico, P.; Viale, G.; Trapani, D.; Duso, B.A.; Curigliano, G. Complexity of genome sequencing and reporting: Next generation sequencing (NGS) technologies and implementation of precision medicine in real life. Crit. Rev. Oncol. Hematol. 2019, 133, 171–182. [Google Scholar] [CrossRef]
- Grody, W.W.; Deignan, J.L. 6—Diagnostic Molecular Genetics∗. In Emery and Rimoin’s Principles and Practice of Medical Genetics and Genomics, 7th ed.; Pyeritz, R.E., Korf, B.R., Grody, W.W., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 165–203. [Google Scholar]
- Sgourou, A.; Papachatzopoulou, A.; Katsila, T.; Patrinos, G.P. Chapter 3—Low- and Medium-Throughput Variant Detection Methods: A Historical Perspective. In Molecular Diagnostics, 3rd ed.; Patrinos, G.P., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 23–39. [Google Scholar]
- Dumitru, R.M. Chapter 9—Genetic Susceptibility in Biochemical and Physiological Traits. In Cardiovascular Diseases; Papageorgiou, N., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 177–217. [Google Scholar]
- Dwivedi, S.; Purohit, P.; Misra, R.; Pareek, P.; Goel, A.; Khattri, S.; Pant, K.K.; Misra, S.; Sharma, P. Diseases and Molecular Diagnostics: A Step Closer to Precision Medicine. Indian J. Clin. Biochem. 2017, 32, 374–398. [Google Scholar] [CrossRef]
- Belmont, J.W. 96—Molecular Methods. In Clinical Immunology, 5th ed.; Rich, R.R., Fleisher, T.A., Shearer, W.T., Schroeder, H.W., Frew, A.J., Weyand, C.M., Eds.; Content Repository Only: London, UK, 2019; pp. 1297–1310. [Google Scholar]
- Landsverk, M.; Wong, L.-J.C. Clinical Molecular Diagnostic Techniques: A Brief Review. In Next Generation Sequencing; Springer: New York, NY, USA, 2013; pp. 19–36. [Google Scholar]
- Fairfax, M.R.; Bluth, M.H.; Salimnia, H. Diagnostic Molecular Microbiology: A 2018 Snapshot. Clin. Lab. Med. 2018, 38, 253–276. [Google Scholar] [CrossRef]
- Wittwer, C.T.; Makrigiorgos, G.M. 4—Nucleic Acid Techniques. In Principles and Applications of Molecular Diagnostics; Rifai, N., Horvath, A.R., Wittwer, C.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 47–86. [Google Scholar]
- Thatcher, S.A. 3—Nucleic Acid Isolation. In Principles and Applications of Molecular Diagnostics; Rifai, N., Horvath, A.R., Wittwer, C.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 35–46. [Google Scholar]
- Leong, S.S.; Yeap, S.P.; Lim, J. Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients. Interface Focus 2016, 6, 20160048. [Google Scholar] [CrossRef] [Green Version]
- Xianyu, Y.; Wang, Q.; Chen, Y. Magnetic particles-enabled biosensors for point-of-care testing. TrAC Trends Anal. Chem. 2018, 106, 213–224. [Google Scholar] [CrossRef]
- Huang, G.; Lu, C.-H.; Yang, H.-H. Chapter 3—Magnetic Nanomaterials for Magnetic Bioanalysis. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications; Wang, X., Chen, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 89–109. [Google Scholar]
- Moro, L.; Turemis, M.; Marini, B.; Ippodrino, R.; Giardi, M.T. Better together: Strategies based on magnetic particles and quantum dots for improved biosensing. Biotechnol. Adv. 2017, 35, 51–63. [Google Scholar] [CrossRef]
- Jamshaid, T.; Tenório Neto, E.; Eissa, M.; Kunita, M.; Errachid, A.; Elaissari, A. Magnetic particles: From preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. TrAC Trends Anal. Chem. 2016, 79, 344–362. [Google Scholar] [CrossRef]
- Raghava Reddy, K.; Reddy, P.A.; Reddy, C.V.; Shetti, N.P.; Babu, B.; Ravindranadh, K.; Shankar, M.V.; Reddy, M.C.; Soni, S.; Naveen, S. Chapter 10—Functionalized magnetic nanoparticles/biopolymer hybrids: Synthesis methods, properties and biomedical applications. In Methods in Microbiology; Gurtler, V., Ball, A.S., Soni, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 227–254. [Google Scholar]
- Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Teleanu, R.I. Neuronanomedicine: An Up-to-Date Overview. Pharmaceutics 2019, 11, 101. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Volceanov, A.; Teleanu, R.I. Impact of Nanoparticles on Brain Health: An Up to Date Overview. J. Clin. Med. 2018, 7, 490. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Negut, I.; Grumezescu, V.; Grumezescu, A.M.; Teleanu, R.I. Nanomaterials for Drug Delivery to the Central Nervous System. Nanomaterials 2019, 9, 371. [Google Scholar] [CrossRef]
- Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V.; Zitka, O. Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomaterials 2017, 7, 243. [Google Scholar] [CrossRef]
- Afradi, N.; Foroughifar, N.; Qomi, M.; Pasdar, H. Folic acid-supported Fe3O4 magnetic nanoparticles as a new, highly effective heterogeneous biocatalyst for the synthesis of 3,4-dihydropyrimidine thiones and their in vitro investigation as antibacterial active agents. Biointerface Res. Appl. Chem. 2018, 8, 3661–3669. [Google Scholar]
- Davoodi, S.D.; Saghavaz, B.H. Optimal synthesis and characterization of magnetic CuMnFe2O4 nanoparticles coated by PEG for drug delivery. Biointerface Res. Appl. Chem. 2017, 7, 2249–2252. [Google Scholar]
- Elazab, H.A. Laser vaporization and controlled condensation (LVCC) of graphene supported Pd/Fe3O4 nanoparticles as an efficient magnetic catalysts for Suzuki Cross-Coupling. Biointerface Res. Appl. Chem. 2018, 8, 3314–3318. [Google Scholar]
- Mehta, R. Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology. Mater. Sci. Eng. C 2017, 79, 901–916. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Hu, S.; Xiong, Y.; Wei, H.; Xu, H.; Duan, H.; Lai, W. Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay. TrAC Trends Anal. Chem. 2019, 114, 151–170. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Abdel-Fatah, S.M. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 55–67. [Google Scholar] [CrossRef]
- Kovacevic, N. Magnetic Beads Based Nucleic Acid Purification for Molecular Biology Applications. In Sample Preparation Techniques for Soil, Plant, and Animal Samples; Micic, M., Ed.; Springer: New York, NY, USA, 2016; pp. 53–67. [Google Scholar]
- Sobczak-Kupiec, A.; Venkatesan, J.; Alhathal AlAnezi, A.; Walczyk, D.; Farooqi, A.; Malina, D.; Hosseini, S.H.; Tyliszczak, B. Magnetic nanomaterials and sensors for biological detection. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 2459–2473. [Google Scholar] [CrossRef] [PubMed]
- Kabe, Y.; Sakamoto, S.; Hatakeyama, M.; Yamaguchi, Y.; Suematsu, M.; Itonaga, M.; Handa, H. Application of high-performance magnetic nanobeads to biological sensing devices. Anal. Bioanal. Chem. 2019, 411, 1825–1837. [Google Scholar] [CrossRef] [Green Version]
- Tangchaikeeree, T.; Polpanich, D.; Elaissari, A.; Jangpatarapongsa, K. Magnetic particles for in vitro molecular diagnosis: From sample preparation to integration into microsystems. Colloids Surf B Biointerfaces 2017, 158, 1–8. [Google Scholar] [CrossRef]
- Van Reenen, A.; de Jong, A.M.; den Toonder, J.M.J.; Prins, M.W.J. Integrated lab-on-chip biosensing systems based on magnetic particle actuation – a comprehensive review. Lab A Chip 2014, 14, 1966–1986. [Google Scholar] [CrossRef]
- Moerland, C.P.; van Ijzendoorn, L.J.; Prins, M.W.J. Rotating magnetic particles for lab-on-chip applications-a comprehensive review. Lab A Chip 2019, 19, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Husain, Q. Nanosupport bound lipases their stability and applications. Biointerface Res. Appl. Chem. 2017, 7, 2194–2216. [Google Scholar]
- Xu, L.; Qi, X.; Li, X.; Bai, Y.; Liu, H. Recent advances in applications of nanomaterials for sample preparation. Talanta 2016, 146, 714–726. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Rhee, M.; Singh, A.; Tripathi, A. Microfluidic Sample Preparation for Medical Diagnostics. Annu. Rev. Biomed. Eng. 2015, 17, 267–286. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Elmongy, H.; Madrakian, T.; Abdel-Rehim, M. Nanomaterials as sorbents for sample preparation in bioanalysis: A review. Anal. Chim. Acta 2017, 958, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Nazario, C.E.D.; Fumes, B.H.; da Silva, M.R.; Lanças, F.M. New materials for sample preparation techniques in bioanalysis. J. Chromatogr. B 2017, 1043, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Coen, M.; Hardick, J.; Gaydos, C.A.; Wong, K.-Y.; Smith, C.; Wilson, S.A.; Vayugundla, S.P.; Wong, S. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection. PLoS ONE 2016, 11, e0158502. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Rampazzo, R.C.P.; Costa, A.D.T.; Krieger, M.A. Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics. Biomed Res. Int. 2017, 2017, 9306564. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-H. Chapter 6—Extraction and Purification of Nucleic Acids and Proteins. In Diagnostic Molecular Biology; Shen, C.-H., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 143–166. [Google Scholar]
- Shen, C.-H. Chapter 7—Detection and Analysis of Nucleic Acids. In Diagnostic Molecular Biology; Shen, C.-H., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 167–185. [Google Scholar]
- Bougas, L.; Langenegger, L.D.; Mora, C.A.; Zeltner, M.; Stark, W.J.; Wickenbrock, A.; Blanchard, J.W.; Budker, D. Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids. Sci. Rep. 2018, 8, 3491. [Google Scholar] [CrossRef] [PubMed]
- Schrittwieser, S.; Pelaz, B.; Parak, W.J.; Lentijo-Mozo, S.; Soulantica, K.; Dieckhoff, J.; Ludwig, F.; Guenther, A.; Tschöpe, A.; Schotter, J. Homogeneous Biosensing Based on Magnetic Particle Labels. Sensors 2016, 16, 828. [Google Scholar] [CrossRef] [PubMed]
- Ríos, Á.; Zougagh, M. Recent advances in magnetic nanomaterials for improving analytical processes. TrAC Trends Anal. Chem. 2016, 84, 72–83. [Google Scholar] [CrossRef]
- Hussain, B.; Yüce, M.; Ullah, N.; Budak, H. 3—Bioconjugated nanomaterials for monitoring food contamination. In Nanobiosensors; Grumezescu, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 93–127. [Google Scholar]
- Plouffe, B.D.; Murthy, S.K.; Lewis, L.H. Fundamentals and application of magnetic particles in cell isolation and enrichment: A review. Reports on progress in physics. Phys. Soc. 2015, 78, 016601. [Google Scholar]
- Gupta, S.; Ramesh, K.; Ahmed, S.; Kakkar, V. Lab-on-Chip Technology: A Review on Design Trends and Future Scope in Biomedical Applications. Int. J. Bio-Sci. Bio-Technol. 2016, 8, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Cheng, R.; Mao, L.; Zhao, Y. Chapter 10—Active colloids: Toward an intelligent micromachine. In Anisotropic Particle Assemblies; Wu, N., Lee, D., Striolo, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 279–312. [Google Scholar]
- Huang, S.; He, Y.-Q.; Jiao, F. Advances of Particles/Cells Magnetic Manipulation in Microfluidic Chips. Chin. J. Anal. Chem. 2017, 45, 1238–1246. [Google Scholar] [CrossRef]
- Giouroudi, I.; Kokkinis, G. Recent Advances in Magnetic Microfluidic Biosensors. Nanomaterials 2017, 7, 171. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, R.; Sinha, A.; Puri, I.K. Magnetic-particle-based microfluidics. In Microfluidics and Nanofluidics Handbook: Fabrication, Implementation, and Applications; CRC Press: Boca Raton, FL, USA, 2016; pp. 433–483. [Google Scholar]
- Kong, L.X.; Perebikovsky, A.; Moebius, J.; Kulinsky, L.; Madou, M. Lab-on-a-CD: A Fully Integrated Molecular Diagnostic System. J. Lab. Autom. 2015, 21, 323–355. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Kolhatkar, A.G.; Zenasni, O.; Xu, S.; Lee, T.R. Biosensing Using Magnetic Particle Detection Techniques. Sensors 2017, 17, 2300. [Google Scholar] [CrossRef]
- Parmeshwar, R.; Rajan, S.S.; Shrestha, K. Principles of cancer screening. Surgery 2018, 36, 139–144. [Google Scholar] [CrossRef]
- Brandão, M.; Julião, I.; Carrilho, C.; Fontes, F.; Lunet, N. Cancer in Sub-Saharan Africa. In Encyclopedia of Cancer, 3rd ed.; Boffetta, P., Hainaut, P., Eds.; Academic Press: Oxford, UK, 2019; pp. 212–224. [Google Scholar]
- Pinsky, P.F. Principles of Cancer Screening. Surg. Clin. N. Am. 2015, 95, 953–966. [Google Scholar] [CrossRef] [Green Version]
- Heyn, H. Chapter 29—Personalized Therapy—Epigenetic Profiling as Predictors of Prognosis and Response. In Epigenetic Cancer Therapy; Gray, S.G., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 677–698. [Google Scholar]
- Loud, J.T.; Murphy, J. Cancer Screening and Early Detection in the 21st Century. Semin. Oncol. Nurs. 2017, 33, 121–128. [Google Scholar] [CrossRef]
- Shankaran, D.R. Chapter 8—Nano-Enabled Immunosensors for Point-of-Care Cancer Diagnosis. In Applications of Nanomaterials; Woodhead Publishing: Cambridge, UK; Sawston, UK, 2018; pp. 205–250. [Google Scholar]
- Ye, F.; Zhao, Y.; El-Sayed, R.; Muhammed, M.; Hassan, M. Advances in nanotechnology for cancer biomarkers. Nano Today 2018, 18, 103–123. [Google Scholar] [CrossRef]
- Huss, R. Chapter 19—Biomarkers. In Translational Regenerative Medicine; Atala, A., Allickson, J.G., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 235–241. [Google Scholar]
- Schiffman, J.D.; Fisher, P.G.; Gibbs, P. Early detection of cancer: Past, present, and future. Am. Soc. Clin. Oncol. Educ. Book 2015, 35, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Sadana, A.; Sadana, N.; Sadana, R. 7—Detection of Cancer Biomarkers by SPR and Optofluidic Ring Resonance Sensors. In A Fractal Analysis of Chemical Kinetics with Applications to Biological and Biosensor Interfaces; Sadana, A., Sadana, N., Sadana, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 157–169. [Google Scholar]
- Wong, K.-C.; Chen, J.; Zhang, J.; Lin, J.; Yan, S.; Zhang, S.; Li, X.; Liang, C.; Peng, C.; Lin, Q.; et al. Early Cancer Detection from Multianalyte Blood Test Results. iScience 2019, 15, 332–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liotta, L.A.; Davis, J.B.; Couch, R.D.; Fredolini, C.; Zhou, W.; Petricoin, E.; Espina, V. Chapter 9—Clinical Proteomics and Molecular Pathology. In Molecular Pathology, 2nd ed.; Coleman, W.B., Tsongalis, G.J., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 183–203. [Google Scholar]
- Cisarovsky, C.; Benetkiewicz, M.; Faivre, S.; Raymond, E.; de Gramont, A. Chapter 5—Biomarker Development in Targeting Cancer Epigenetic. In Drug Discovery in Cancer Epigenetics; Egger, G., Arimondo, P., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 123–142. [Google Scholar]
- Javeed, N.; Mukhopadhyay, D. 19—Translational Potential of Tumor Exosomes in Diagnosis and Therapy. In Diagnostic and Therapeutic Applications of Exosomes in Cancer; Amiji, M., Ramesh, R., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 343–353. [Google Scholar]
- Im, H.; Yang, K.S.; Lee, H.; Castro, C.M. 7—Nanotechnology Platforms for Cancer Exosome Analyses. In Diagnostic and Therapeutic Applications of Exosomes in Cancer; Amiji, M., Ramesh, R., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 119–128. [Google Scholar]
- Wu, M.; Huang, S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. Clin. Oncol. 2017, 7, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Teeman, E.; Shasha, C.; Evans, J.E.; Krishnan, K.M. Intracellular dynamics of superparamagnetic iron oxide nanoparticles for magnetic particle imaging. Nanoscale 2019, 11, 7771–7780. [Google Scholar] [CrossRef]
- Yu, E.Y.; Bishop, M.; Zheng, B.; Ferguson, R.M.; Khandhar, A.P.; Kemp, S.J.; Krishnan, K.M.; Goodwill, P.W.; Conolly, S.M. Magnetic Particle Imaging: A Novel in Vivo Imaging Platform for Cancer Detection. Nano Lett. 2017, 17, 1648–1654. [Google Scholar] [CrossRef] [PubMed]
- Loo, J.F.C.; Yang, C.; Tsang, H.L.; Lau, P.M.; Yong, K.T.; Ho, H.P.; Kong, S.K. An Aptamer Bio-barCode (ABC) assay using SPR, RNase H, and probes with RNA and gold-nanorods for anti-cancer drug screening. Analyst 2017, 142, 3579–3587. [Google Scholar] [CrossRef] [PubMed]
- Merlos Rodrigo, M.A.; Krejcova, L.; Kudr, J.; Cernei, N.; Kopel, P.; Richtera, L.; Moulick, A.; Hynek, D.; Adam, V.; Stiborova, M.; et al. Fully automated two-step assay for detection of metallothionein through magnetic isolation using functionalized γ-Fe2O3 particles. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1039, 17–27. [Google Scholar] [CrossRef]
- Ribeiro, J.R.; Gaudet, H.M.; Khan, M.; Schorl, C.; James, N.E.; Oliver, M.T.; DiSilvestro, P.A.; Moore, R.G.; Yano, N. Human Epididymis Protein 4 Promotes Events Associated with Metastatic Ovarian Cancer via Regulation of the Extracelluar Matrix. Front. Oncol. 2018, 7, 332. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Liu, Y.; Qiu, R.; Foda, M.; Zhang, Y.; Wang, T.; Li, J. The fabrication of magnetic particle-based chemiluminescence immunoassay for human epididymis protein-4 detection in ovarian cancer. Biochem. Biophys. Rep. 2018, 13, 73–77. [Google Scholar] [CrossRef]
- Liu, W.; Nie, L.; Li, F.; Aguilar, Z.P.; Xu, H.; Xiong, Y.; Fu, F.; Xu, H. Folic acid conjugated magnetic iron oxide nanoparticles for nondestructive separation and detection of ovarian cancer cells from whole blood. Biomater. Sci. 2016, 4, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Liu, C.; Yang, W.F.; Zhang, H.T.; Li, Y.F.; Zeng, F.; Cao, J.Q. Using a novel CD133+ immune magnetic particle to separate gastric adenocarcinoma stem cells from peripheral blood and the pluripotency study about the separated cells. J. Biomed. Nanotechnol. 2017, 13, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Chieh, J.J.; Huang, K.W.; Chuang, C.P.; Wei, W.C.; Dong, J.J.; Lee, Y.Y. Immunomagnetic reduction assay on des-gamma-carboxy prothrombin for screening of hepatocellular carcinoma. IEEE Trans. Biomed. Eng. 2016, 63, 1681–1686. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.; Nie, Y.; Tadimety, A.; Shen, T.; Zhang, J.X.J. Microfluidics-enabled rapid manufacturing of hierarchical silica-magnetic microflower toward enhanced circulating tumor cell screening. Biomater. Sci. 2018, 6, 3121–3125. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.M. The application of magnetic nanoparticles in the treatment and monitoring of cancer and infectious diseases. Biosci. Horiz. Int. J. Stud. Res. 2017, 10. [Google Scholar] [CrossRef]
- Xuan, M.; Shao, J.; Zhao, J.; Li, Q.; Dai, L.; Li, J. Magnetic Mesoporous Silica Nanoparticles Cloaked by Red Blood Cell Membranes: Applications in Cancer Therapy. Angew. Chem. Int. Ed. 2018, 57, 6049–6053. [Google Scholar] [CrossRef]
- Natesan, S.; Ponnusamy, C.; Sugumaran, A.; Chelladurai, S.; Shanmugam Palaniappan, S.; Palanichamy, R. Artemisinin loaded chitosan magnetic nanoparticles for the efficient targeting to the breast cancer. Int. J. Biol. Macromol. 2017, 104, 1853–1859. [Google Scholar] [CrossRef]
- Nosrati, H.; Adibtabar, M.; Sharafi, A.; Danafar, H.; Hamidreza Kheiri, M. PAMAM-modified citric acid-coated magnetic nanoparticles as pH sensitive biocompatible carrier against human breast cancer cells. Drug Dev. Ind. Pharm. 2018, 44, 1377–1384. [Google Scholar] [CrossRef]
- Lu, Q.; Dai, X.; Zhang, P.; Tan, X.; Zhong, Y.; Yao, C.; Song, M.; Song, G.; Zhang, Z.; Peng, G.; et al. Fe3O4 @Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells. Int. J. Nanomed. 2018, 13, 2491–2505. [Google Scholar] [CrossRef]
- Dey, C.; Ghosh, A.; Ahir, M.; Ghosh, A.; Goswami, M.M. Improvement of Anticancer Drug Release by Cobalt Ferrite Magnetic Nanoparticles through Combined pH and Temperature Responsive Technique. ChemPhysChem 2018, 19, 2872–2878. [Google Scholar] [CrossRef]
- Huang, W.; Liu, Z.; Zhou, G.; Tian, A.; Sun, N. Magnetic gold nanoparticle-mediated small interference RNA silencing Bag-1 gene for colon cancer therapy. Oncol. Rep. 2016, 35, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Fierer, J.; Looney, D.; Pechère, J.-C. 2—Nature and Pathogenicity of Micro-organisms. In Infectious Diseases, 4th ed.; Cohen, J., Powderly, W.G., Opal, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 4–25. [Google Scholar]
- Wilson, C.C.; Schooley, R.T. 3—Host Responses to Infection. In Infectious Diseases, 4th ed.; Cohen, J., Powderly, W.G., Opal, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 26–39. [Google Scholar]
- Tripathi, L.P.; Chen, Y.-A.; Mizuguchi, K.; Morita, E. Network-Based Analysis of Host-Pathogen Interactions. In Encyclopedia of Bioinformatics and Computational Biology; Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C., Eds.; Academic Press: Oxford, UK, 2019; pp. 932–937. [Google Scholar]
- Wellehan, J.F.X.; Lierz, M.; Phalen, D.; Raidal, S.; Styles, D.K.; Crosta, L.; Melillo, A.; Schnitzer, P.; Lennox, A.; Lumeij, J.T. CHAPTER2—Infectious disease. In Current Therapy in Avian Medicine and Surgery; Speer, B.L., Ed.; W.B. Saunders: Philadelphia, PA, USA, 2016; pp. 22–106. [Google Scholar]
- Carinelli, S.; Martí, M.; Alegret, S.; Pividori, M.I. Biomarker detection of global infectious diseases based on magnetic particles. New Biotechnol. 2015, 32, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Ding, X.; Yang, Y.Y.; Xu, Q.H. Metal Nanoparticles for Diagnosis and Therapy of Bacterial Infection. Adv. Healthc. Mater. 2018, 7, e1701392. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Mohamed, M.A.A.; Zagorovsky, K.; Chan, W.C.W. State of diagnosing infectious pathogens using colloidal nanomaterials. Biomaterials 2017, 146, 97–114. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, Y. Development of a fast and efficient method for hepatitis A virus concentration from green onion. J. Virol. Methods 2017, 249, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Kanitthamniyom, P.; Zhang, Y. Magnetic digital microfluidics on a bioinspired surface for point-of-care diagnostics of infectious disease. Electrophoresis 2019, 40, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.W.; Fang, Z.S.; Chen, Y.T.; Chen, Y.I.; Yao, B.Y.; Cheng, J.Y.; Chien, C.Y.; Chang, Y.C.; Hu, C.M.J. Targeting and Enrichment of Viral Pathogen by Cell Membrane Cloaked Magnetic Nanoparticles for Enhanced Detection. ACS Appl. Mater. Interfaces 2017, 9, 39953–39961. [Google Scholar] [CrossRef]
- Singhal, C.; Dubey, A.; Mathur, A.; Pundir, C.S.; Narang, J. Paper based DNA biosensor for detection of chikungunya virus using gold shells coated magnetic nanocubes. Process Biochem. 2018, 74, 35–42. [Google Scholar] [CrossRef]
- Ricks, K.M.; Shoemaker, C.J.; Dupuy, L.C.; Flusin, O.; Voorhees, M.A.; Fulmer, A.N.; Badger, C.V.; Schmaljohn, C.S.; Schoepp, R.J. Development of a bead-based immunoassay using virus-like particles for detection of alphaviral humoral response. J. Virol. Methods 2019, 270, 12–17. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Y.; Chen, Z.; Hu, Z.; Fang, Y.; Liao, P.; Deng, Y.; He, N. Performance evaluation of a novel sample in-answer out (SIAO) system based on magnetic nanoparticles. J. Biomed. Nanotechnol. 2017, 13, 1619–1630. [Google Scholar] [CrossRef]
- Villamizar-Gallardo, R.A.; Osma, J.F.; Ortíz, O.O. New technique for direct fluoroimmunomagnetic detection of rotavirus in water samples. J. Water Health 2017, 15, 932–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.; Li, F.; Li, F.; Xiong, Y.; Xu, H. Vancomycin modified PEGylated-magnetic nanoparticles combined with PCR for efficient enrichment and detection of Listeria monocytogenes. Sens. Actuatorsb Chem. 2017, 247, 546–555. [Google Scholar] [CrossRef]
- Cihalova, K.; Hegerova, D.; Jimenez, A.M.; Milosavljevic, V.; Kudr, J.; Skalickova, S.; Hynek, D.; Kopel, P.; Vaculovicova, M.; Adam, V. Antibody-free detection of infectious bacteria using quantum dots-based barcode assay. J. Pharm. Biomed. Anal. 2017, 134, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Tung, L.M.; Cong, N.X.; Huy, L.T.; Lan, N.T.; Phan, V.N.; Hoa, N.Q.; Vinh, L.K.; Thinh, N.V.; Tai, L.T.; Ngo, D.T.; et al. Synthesis, characterizations of superparamagnetic Fe3O4-Ag hybrid nanoparticles and their application for highly effective bacteria inactivation. J. Nanosci. Nanotechnol. 2016, 16, 5902–5912. [Google Scholar] [CrossRef]
- Bezdekova, J.; Hutarova, J.; Vaculovicova, M. Magnetic molecularly imprinted polymers used for staphylococcus aureus isolation and detection. In Proceedings of the NANOCON 2018 Conference 10th Anniversary International Conference on Nanomaterials-Research and Application, Brno, Czech Republic, 17–19 October 2018. [Google Scholar]
- Cheng, D.; Yu, M.; Fu, F.; Han, W.; Li, G.; Xie, J.; Song, Y.; Swihart, M.T.; Song, E. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters. Anal. Chem. 2016, 88, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, H.; Rao, X.; Liu, Z.; Zhu, H.; Xu, Y. Point-of-Care Testing of Pathogenic Bacteria at the Single-Colony Level via Gas Pressure Readout Using Aptamer-Coated Magnetic CuFe2O4 and Vancomycin-Capped Platinum Nanoparticles. Anal. Chem. 2019, 91, 1494–1500. [Google Scholar] [CrossRef] [PubMed]
- Kearns, H.; Goodacre, R.; Jamieson, L.E.; Graham, D.; Faulds, K. SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Anal. Chem. 2017, 89, 12666–12673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halouane, F.; Jijie, R.; Meziane, D.; Li, C.; Singh, S.K.; Bouckaert, J.; Jurazek, J.; Kurungot, S.; Barras, A.; Li, M.; et al. Selective isolation and eradication of: E. coli associated with urinary tract infections using anti-fimbrial modified magnetic reduced graphene oxide nanoheaters. J. Mater. Chem. B 2017, 5, 8133–8142. [Google Scholar] [CrossRef]
- Fang, W.; Han, C.; Zhang, H.; Wei, W.; Liu, R.; Shen, Y. Preparation of amino-functionalized magnetic nanoparticles for enhancement of bacterial capture efficiency. RSC Adv. 2016, 6, 67875–67882. [Google Scholar] [CrossRef]
- De Alcântara Sica de Toledo, L.; et al. Thermal Magnetic Field Activated Propolis Release From Liquid Crystalline System Based on Magnetic Nanoparticles. AAPS Pharmscitech 2018, 19, 3258–3271. [Google Scholar] [CrossRef] [PubMed]
- Mass, M.; Roberti, M.; Salomón, F.; Tropea, S.; Lloret, M.; Brengi, D.; Malatto, L.; Fraigi, L.; Longinotti, G.; Ybarra, G.; et al. Development of a point-of-care platform for diagnosis of infectious diseases. In Proceedings of the Smart Systems Integration 2016-International Conference and Exhibition on Integration Issues of Miniaturized Systems, SSI 2016, Munich, Germany, 9–10 March 2016. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chircov, C.; Grumezescu, A.M.; Holban, A.M. Magnetic Particles for Advanced Molecular Diagnosis. Materials 2019, 12, 2158. https://doi.org/10.3390/ma12132158
Chircov C, Grumezescu AM, Holban AM. Magnetic Particles for Advanced Molecular Diagnosis. Materials. 2019; 12(13):2158. https://doi.org/10.3390/ma12132158
Chicago/Turabian StyleChircov, Cristina, Alexandru Mihai Grumezescu, and Alina Maria Holban. 2019. "Magnetic Particles for Advanced Molecular Diagnosis" Materials 12, no. 13: 2158. https://doi.org/10.3390/ma12132158
APA StyleChircov, C., Grumezescu, A. M., & Holban, A. M. (2019). Magnetic Particles for Advanced Molecular Diagnosis. Materials, 12(13), 2158. https://doi.org/10.3390/ma12132158