Structural Change in Ni-Fe-Ga Magnetic Shape Memory Alloys after Severe Plastic Deformation
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Optical Microstructure Analysis
3.2. SEM Analysis
3.3. TEM Analysis
3.4. EDX Analysis
3.5. Microhardness Considerations
3.6. Thermo-Magnetic Data
4. Conclusions
- For the first time, buttons of Ni-Fe-Ga (with and without Co and Al substitution) in the as-cast condition were successfully severely plastically deformed by HSHPT at room temperature.
- The microstructure of the two-phase Heusler Ni-Fe-Ga FSM alloys Ni57Fe18Ga25, Ni50Fe22Ga25Co3, Ni52Fe20Co2Ga26, and Ni52Fe20Co3Ga23Al2 after SPD was explored after SPD with an optical microscope, SEM-EDX, as well as TEM.
- Martensitic transformation that takes place in severely deformed Ni-Fe-Ga alloys with Co and Al substitutions has been highlighted by magnetic measurements.
- In the temperature range over which the martensitic transformation occurs a microstructural change take place producing discontinuities in the thermal dependence of magnetization.
- The severe deformation at 0.95 logarithmic degree induces a decrease in MT temperatures, an increase in Tc and a decrease in magnetization, while a 2.2 degree of deformation induces a loss of the shape memory effect in the Ni52Fe20Co2Ga26 alloy, and unstable austenite in the Ni52Fe20Co3Ga23Al2 alloy.
Author Contributions
Funding
Conflicts of Interest
References
- Bahador, A.; Hamzah, E.; Kondoh, K.; Asma Abubakar, T.; Yusof, F.; Umeda, J.; Saud, S.N.; Ibrahim, M.K. Microstructure and superelastic properties of free forged Ti–Ni shape-memory alloy. Trans. Nonferrous Met. Soc. China (English Ed.) 2018, 28, 502–514. [Google Scholar] [CrossRef]
- Frolova, L.; Mino, J.; Ryba, T.; Gamcova, J.; Dzubinska, A.; Reiffers, M.; Diko, P.; Kavecansky, V.; Milkovic, O.; Kravcak, J.; et al. Novel compositions of Heusler-based glass-coated microwires for practical applications using shape memory effect. J. Alloys Compd. 2018, 747, 21–25. [Google Scholar] [CrossRef]
- Caputo, M.P.; Berkowitz, A.E.; Armstrong, A.; Müllner, P.; Solomon, C.V. 4D printing of net shape parts made from Ni-Mn-Ga magnetic shape-memory alloys. Addit. Manuf. 2018, 21, 579–588. [Google Scholar] [CrossRef]
- Qu, Y.H.; Cong, D.Y.; Li, S.H.; Gui, W.Y.; Nie, Z.H.; Zhang, M.H.; Ren, Y.; Wang, Y.D. Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory alloy. Acta Mater. 2018, 151, 41–55. [Google Scholar] [CrossRef]
- Pons, J.; Cesari, E.; Seguí, C.; Masdeu, F.; Santamarta, R. Ferromagnetic shape memory alloys: Alternatives to Ni–Mn–Ga. Mater. Sci. Eng. A 2008, 481482, 57–65. [Google Scholar] [CrossRef]
- Brandão, P.; Infante, V.; Deus, A.M. ScienceDirect Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine. Struct. Integr. Procedia 2016, 1, 189–196. [Google Scholar] [CrossRef]
- Sofronie, M.; Tolea, F.; Crisan, A.D.; Popescu, B.; Valeanu, M. Magnetoelastic properties in polycrystalline ferromagnetic shape memory Heusler alloys. Procedia Struct. Integr. 2016, 2, 1530–1537. [Google Scholar] [CrossRef] [Green Version]
- González-Legarreta, L.; Rosa, W.O.; García, J.; Ipatov, M.; Nazmunnahar, M.; Escoda, L.; Suñol, J.J.; Prida, V.M.; Sommer, R.L.; González, J.; et al. Annealing effect on the crystal structure and exchange bias in Heusler Ni45.5Mn43.0In11.5alloy ribbons. J. Alloys Compd. 2014, 582, 588–593. [Google Scholar] [CrossRef]
- Liu, Q.H.; Liu, J.; Huang, Y.J.; Hu, Q.D.; Li, J.G. A study of microstructure and crystal orientation in directionally solidified Ni-Fe-Ga-Co magnetic shape memory alloys. J. Alloys Compd. 2013, 572, 186–191. [Google Scholar] [CrossRef]
- Biswas, A.; Krishnan, M. Deformation Studies of Ni 55 Fe 19 Ga 26 Ferromagnetic Shape Memory Alloy. Phys. Procedia 2010, 10, 105–110. [Google Scholar] [CrossRef]
- An, X.H.; Lin, Q.Y.; Sha, G.; Huang, M.X.; Ringer, S.P.; Zhu, Y.T.; Liao, X.Z. Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion. Acta Mater. 2016, 109, 300–313. [Google Scholar] [CrossRef]
- Gurǎu, G.; Gurǎu, C.; Potecaşu, O.; Alexandru, P.; Bujoreanu, L.-G. Novel high-speed high pressure torsion technology for obtaining Fe-Mn-Si-Cr shape memory alloy active elements. J. Mater. Eng. Perform. 2014, 23, 2396–2402. [Google Scholar] [CrossRef]
- Paleu, V.; Gurau, G.; Comaneci, R.I.; Sampath, V.; Gurau, C.; Bujoreanu, L.-G. A new application of Fe-28 Mn-6 Si-5 Cr (mass. %) shape memory alloy, for self-adjustable axial preloading of ball bearings. Smart Mater. Struct. 2018, 27, 7. [Google Scholar] [CrossRef]
- Gurau, G.; Gurau, C.; Bujoreanu, L.G.; Sampath, V. A Versatile Method for Nanostructuring Metals, Alloys and Metal Based Composites. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Beijing, China, 24–27 October 2017; Volume 209. [Google Scholar]
- Li, Y.; Xin, Y.; Chai, L.; Ma, Y.; Xu, H. Microstructures and shape memory characteristics of dual-phase Co–Ni–Ga high-temperature shape memory alloys. Acta Mater. 2010, 58, 3655–3663. [Google Scholar] [CrossRef]
- Gurau, G.; Gurau, C.; Sampath, V. Investigation of microhardness evolution in an ultrafine grained NiTi alloy formed via high speed high pressure torsion (HSHPT). MATEC Web Conf. 2015, 33, 6. [Google Scholar] [CrossRef]
- Chowdhury, P.; Sehitoglu, H. Deformation physics of shape memory alloys—Fundamentals at atomistic frontier. Prog. Mater. Sci. 2017, 88, 49–88. [Google Scholar] [CrossRef]
Sample. | Ms (K) | Mf (K) | As(K) | Af (K) | Tc (K) |
---|---|---|---|---|---|
Ni52Fe20Co2Ga26 _undeformed | 243 | 218 | 250 | 258 | 328 |
Ni52Fe20Co2Ga26_s1 | 224 | 207 | 230 | 238 | 351 |
Ni52Fe20Co2Ga26_s2 | - | - | - | - | 182 |
Ni52Fe20Co3Ga23Al2_undeformed | 236 | 210 | 245 | 260 | 355 |
Ni52Fe20Co3Ga23Al2_s2 | 240 | 145 | 238 | 267 | >400 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurau, G.; Gurau, C.; Tolea, F.; Sampath, V. Structural Change in Ni-Fe-Ga Magnetic Shape Memory Alloys after Severe Plastic Deformation. Materials 2019, 12, 1939. https://doi.org/10.3390/ma12121939
Gurau G, Gurau C, Tolea F, Sampath V. Structural Change in Ni-Fe-Ga Magnetic Shape Memory Alloys after Severe Plastic Deformation. Materials. 2019; 12(12):1939. https://doi.org/10.3390/ma12121939
Chicago/Turabian StyleGurau, Gheorghe, Carmela Gurau, Felicia Tolea, and Vedamanickam Sampath. 2019. "Structural Change in Ni-Fe-Ga Magnetic Shape Memory Alloys after Severe Plastic Deformation" Materials 12, no. 12: 1939. https://doi.org/10.3390/ma12121939