Tailoring One-Pass Asymmetric Rolling of Extra Low Carbon Steel for Shear Texture and Recrystallization
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
- shear strain distribution and texture rotation,
- deformed microstructure,
- recrystallization kinetics, texture and tensile strength.
4.1. Shear Strain Distribution and Texture Rotation
4.2. Deformed Microstructure
4.3. Recrystallization Kinetics, Texture, and Tensile Strength
5. Conclusions
- The rolling texture approaches the shear texture when the applied thickness reduction per pass is 50% or above, together with an asymmetry ratio of 1:2.
- The value of the shear coefficient is independent of the applied number of passes but sensitive to its measurement position along the thickness of the sheet. This measured value in a given pass with inserted new pin can be related to the expected rotation of the texture to be achieved in asymmetric rolling.
- Under effective asymmetric conditions, there is more grain fragmentation in the mid thickness area of a sheet due to the increased lattice rotation inherent in shear compared to the symmetric case.
- Both average grain size and JMAK exponent remain smaller in the case of asymmetric rolling than for symmetric rolling after recrystallization.
- A very different recrystallization texture forms in optimal asymmetric rolling conditions compared to the conventional recrystallization textures observed in symmetric rolling.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sakai, T.; Hamada, S.; Saito, Y. Improvement of the r-value in 5052 aluminum alloy sheets having through-thickness shear texture by 2-pass single-roll drive unidirectional shear rolling. Scr. Mater. 2001, 44, 2569–2573. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, D.N. Analysis of deformation textures of asymmetrically rolled aluminum sheets. Acta Mater. 2001, 49, 2583–2595. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, D.N. Analysis of deformation textures of asymmetrically rolled steel sheets. Int. J. Mech. Sci. 2001, 43, 1997–2015. [Google Scholar] [CrossRef]
- Utsunomiya, H.; Ueno, T.; Sakai, T. Improvement in the r-value of aluminum sheets by differential-friction rolling. Scr. Mater. 2007, 57, 1109–1112. [Google Scholar] [CrossRef]
- Jin, H.; Lloyd, D.J. Evolution of texture in AA6111 aluminum alloy after asymmetric rolling with various velocity ratios between top and bottom rolls. Mater. Sci. Eng. A 2007, 465, 267–273. [Google Scholar] [CrossRef]
- Lee, J.-K.; Lee, D.N. Texture control and grain refinement of AA1050 Al alloy sheets by asymmetric rolling. Int. J. Mech. Sci. 2008, 50, 869–887. [Google Scholar] [CrossRef]
- Beausir, B.; Biswas, S.; Kim, D.I.; Tóth, L.S.; Suwas, S. Analysis of microstructure and texture evolution in pure magnesium during symmetric and asymmetric rolling. Acta Mater. 2009, 57, 5061–5077. [Google Scholar] [CrossRef]
- Ding, Y.; Jiang, J.; Shan, A. Microstructures and mechanical properties of commercial purity iron processed by asymmetric rolling. Mater. Sci. Eng. A 2009, 509, 76–80. [Google Scholar] [CrossRef]
- Lapovok, R.; Orlov, D.; Timokhina, I.B.; Pougis, A.; Toth, L.S.; Hodgson, P.D.; Haldar, A.; Bhattacharjee, D. Asymmetric rolling of interstitial-free steel using one idle roll. Metall. Mater. Trans. A 2012, 43, 1328–1340. [Google Scholar] [CrossRef]
- Orlov, D.; Pougis, A.; Lapovok, R.; Toth, L.; Timokhina, I.; Hodgson, P.; Haldar, A.; Bhattacharjee, D. Asymmetric rolling of interstitial-free steel using differential roll diameters. Part I: Mechanical properties and deformation textures. Metall. Mater. Trans. A 2013, 44, 4346–4359. [Google Scholar] [CrossRef]
- Sidor, J.; Miroux, A.; Petrov, R.; Kestens, L. Microstructural and crystallographic aspects of conventional and asymmetric rolling processes. Acta Mater. 2008, 56, 2495–2507. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Zehetbauer, M.J.; Estrin, Y.; Höppel, H.W.; Ivanisenko, Y.; Hahn, H.; Wilde, G.; Roven, H.J.; Sauvage, X.; Langdon, T.G. The innovation potential of bulk nanostructured materials. Adv. Eng. Mater. 2007, 9, 527–533. [Google Scholar] [CrossRef]
- Tóth, L.S.; Lapovok, R.; Hasani, A.; Gu, C. Non-equal channel angular pressing of aluminum alloy. Scr. Mater. 2009, 61, 1121–1124. [Google Scholar] [CrossRef]
- Sagapuram, D.; Efe, M.; Moscoso, W.; Chandrasekar, S.; Trumble, K.P. Controlling texture in magnesium alloy sheet by shear-based deformation processing. Acta Mater. 2013, 61, 6843–6856. [Google Scholar] [CrossRef]
- Huang, X.; Suzuki, K.; Chino, Y. Improvement of stretch formability of pure titanium sheet by differential speed rolling. Scr. Mater. 2010, 63, 473–476. [Google Scholar] [CrossRef]
- Kim, W.J.; Lee, Y.G.; Lee, M.J.; Wang, J.Y.; Park, Y.B. Exceptionally high strength in Mg–3Al–1Zn alloy processed by high-ratio differential speed rolling. Scr. Mater. 2011, 65, 1105–1108. [Google Scholar] [CrossRef]
- Sidor, J.; Miroux, A.; Petrov, R.; Kestens, L. Controlling the plastic anisotropy in asymmetrically rolled aluminium sheets. Philos. Mag. 2008, 88, 3779–3792. [Google Scholar] [CrossRef]
- Lapovok, R.; Tóth, L.S.; Winkler, M.; Semiatin, S.L. A comparison of continuous SPD processes for improving the mechanical properties of aluminum alloy 6111. J. Mater. Res. 2009, 24, 459–469. [Google Scholar] [CrossRef]
- Tóth, L.S.; Beausir, B.; Orlov, D.; Lapovok, R.; Haldar, A. Analysis of texture and R value variations in asymmetric rolling of IF steel. J. Mater. Proc. Technol. 2012, 212, 509–515. [Google Scholar] [CrossRef]
- Dhinwal, S.S.; Toth, L.S.; Hodgson, P.D.; Haldar, A. Effects of processing conditions on texture and microstructure evolution in extra-low carbon steel during multi-pass asymmetric rolling. Materials 2018, 11, 1327. [Google Scholar] [CrossRef]
- Choi, C.H.; Kim, K.; Lee, D.N. The Effect of Shear Texture Development on the Formability in Rolled Aluminum Alloys Sheets, Materials Science Forum; Trans Tech Publications Inc.: Zurich, Switzerland, 1998; pp. 391–396. [Google Scholar]
- Huang, X.; Suzuki, K.; Watazu, A.; Shigematsu, I.; Saito, N. Effects of thickness reduction per pass on microstructure and texture of Mg–3Al–1Zn alloy sheet processed by differential speed rolling. Scr. Mater. 2009, 60, 964–967. [Google Scholar] [CrossRef]
- Beausir, B.; Tóth, L.S.; Neale, K.W. Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear. Acta Mater. 2007, 55, 2695–2705. [Google Scholar] [CrossRef]
- Kim, W.J.; Yoo, S.J.; Lee, J.B. Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature. Scr. Mater. 2010, 62, 451–454. [Google Scholar] [CrossRef]
- Kim, W.J.; Lee, J.B.; Kim, W.Y.; Jeong, H.T.; Jeong, H.G. Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by asymmetrical rolling. Scr. Mater. 2007, 56, 309–312. [Google Scholar] [CrossRef]
- Pawlik, K.; Ozga, P. LaboTex: The texture analysis software. Göttinger Arbeiten Geologie Paläontologie 1999, SB4. [Google Scholar]
- Beausir, B.; Fundenberger, J.J. Analysis Tool for Electron and X-ray Diffraction, ATEX-Software. Available online: www.atex-software.eu (accessed on 22 May–12 June 2019).
- Kang, S.-B.; Min, B.-K.; Kim, H.-W.; Wilkinson, D.; Kang, J. Effect of asymmetric rolling on the texture and mechanical properties of AA6111-aluminum sheet. Metall. Mater. Trans. A 2005, 36, 3141–3149. [Google Scholar] [CrossRef]
- Roumina, R.; Sinclair, C.W. Deformation geometry and through-thickness strain gradients in asymmetric rolling. Metall. Mater. Trans. A 2008, 39, 2495–2503. [Google Scholar] [CrossRef]
- Richelsen, A.B. Elastic—plastic analysis of the stress and strain distributions in asymmetric rolling. Int. J. Mech. Sci. 1997, 39, 1199–1211. [Google Scholar] [CrossRef]
- Richelsen, A.B. Numerical analysis of asymmetric rolling accounting for differences in friction. J. Mater. Proc. Technol. 1994, 45, 149–154. [Google Scholar] [CrossRef]
- Hwang, Y.-M.; Tzou, G.-Y. Analytical and experimental study on asymmetrical sheet rolling. Int. J. Mech. Sci. 1997, 39, 289–303. [Google Scholar] [CrossRef]
- Tzou, G.-Y. Relationship between frictional coefficient and frictional factor in asymmetrical sheet rolling. J. Mater. Proc. Technol. 1999, 86, 271–277. [Google Scholar] [CrossRef]
- Salimi, M.; Sassani, F. Modified slab analysis of asymmetrical plate rolling. Int. J. Mech. Sci. 2002, 44, 1999–2023. [Google Scholar] [CrossRef]
- Hwang, Y.-M.; Tzou, G.-Y. An analytical approach to asymmetrical hot-sheet rolling considering the effects of the shear stress and internal moment at the roll gap. J. Mater. Proc. Technol. 1995, 52, 399–424. [Google Scholar] [CrossRef]
- Yeung, W.Y.; Duggan, B.J. Shear band angles in rolled F.C.C. materials. Acta Metall. 1987, 35, 541–548. [Google Scholar] [CrossRef]
- Mishra, S.; Därmann, C.; Lücke, K. On the development of the Goss texture in iron-3% silicon. Acta Metall. 1984, 32, 2185–2201. [Google Scholar] [CrossRef]
- Shimizu, Y.; Ito, Y.; Iida, Y. Formation of the Goss orientation near the surface of 3 pct silicon steel during hot rolling. MTA 1986, 17, 1323–1334. [Google Scholar] [CrossRef]
- Nguyen-Minh, T.; Sidor, J.J.; Petrov, R.H.; Kestens, L.A.I. Occurrence of shear bands in rotated Goss {110}<110>orientations of metals with bcc crystal structure. Scr. Mater. 2012, 67, 935–938. [Google Scholar] [CrossRef]
- Haratani, T.; Hutchinson, W.B.; Dillamore, I.L.; Bate, P. Contribution of shear banding to origin of Goss texture in silicon iron. Met. Sci. 1984, 18, 57–66. [Google Scholar] [CrossRef]
- Hölscher, M.; Raabe, D.; Lücke, K. Rolling and recrystallization textures of bcc steels. Steel Res. Int. 1991, 62, 567–575. [Google Scholar] [CrossRef]
- Chen, Q.Z.; Quadir, M.Z.; Duggan, B.J. Shear band formation in IF steel during cold rolling at medium reduction levels. Philos. Mag. 2006, 86, 3633–3646. [Google Scholar] [CrossRef]
- Liu, Q.; Juul Jensen, D.; Hansen, N. Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium. Acta Mater. 1998, 46, 5819–5838. [Google Scholar] [CrossRef]
- Lee, C.S.; Duggan, B.J.; Smallman, R.E. A theory of deformation banding in cold rolling. Acta Metall. Mater. 1993, 41, 2265–2270. [Google Scholar] [CrossRef]
- Huang, Y.; Prangnell, P.B. Orientation splitting and its contribution to grain refinement during equal channel angular extrusion. J. Mater. Sci. 2008, 43, 7273–7279. [Google Scholar] [CrossRef]
- Gu, C.F.; Tóth, L.S.; Arzaghi, M.; Davies, C.H.J. Effect of strain path on grain refinement in severely plastically deformed copper. Scr. Mater. 2011, 64, 284–287. [Google Scholar] [CrossRef]
- Prangnell, P.B.; Bowen, J.R.; Apps, P.J. Ultra-fine grain structures in aluminium alloys by severe deformation processing. Mater. Sci. Eng. A 2004, 375–377, 178–185. [Google Scholar] [CrossRef]
- Humphreys, F.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Hutchinson, B. Nucleation of recrystallisation. Scr. Metall. Mater. 1992, 27, 1471–1475. [Google Scholar] [CrossRef]
- Hutchinson, W.B. Recrystallisation textures in iron resulting from nucleation at grain boundaries. Acta Metall. 1989, 37, 1047–1056. [Google Scholar] [CrossRef]
- Embury, J.D.; Poole, W.J.; Koken, E. Some views on the influence of strain path on recrystallization. Scr. Metall. Mater. 1992, 27, 1465–1470. [Google Scholar] [CrossRef]
- Doherty, R.D.; Hughes, D.A.; Humphreys, F.J.; Jonas, J.J.; Jensen, D.J.; Kassner, M.E.; King, W.E.; McNelley, T.R.; McQueen, H.J.; Rollett, A.D. Current issues in recrystallization: A review. Mater. Sci. Eng. A 1997, 238, 219–274. [Google Scholar] [CrossRef]
- Hutchinson, B.; Jonsson, S.; Ryde, L. On the kinetics of recrystallisation in cold worked metals. Scr. Metall. 1989, 23, 671–676. [Google Scholar] [CrossRef]
- Doherty, R.D. Recrystallization and texture. Prog. Mater. Sci. 1997, 42, 39–58. [Google Scholar] [CrossRef]
- Hutchinson, W.B.; Ryde, L.; Bate, P.S.; Bacroix, B. On the description of misorientations and interpretation of recrystallisation textures. Scr. Mater. 1996, 35, 579–582. [Google Scholar] [CrossRef]
- Sánchez-Araiza, M.; Godet, S.; Jacques, P.J.; Jonas, J.J. Texture evolution during the recrystallization of a warm-rolled low-carbon steel. Acta Mater. 2006, 54, 3085–3093. [Google Scholar] [CrossRef]
- Vandermeer, R.A.; Juul Jensen, D. The migration of high angle grain boundaries during recrystallization. Interface Sci. 1998, 6, 95–104. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Kozlov, E.V.; Ivanov, Y.F.; Lian, J.; Nazarov, A.A.; Baudelet, B. Deformation behaviour of ultra-fine-grained copper. Acta Metall. Mater. 1994, 42, 2467–2475. [Google Scholar] [CrossRef]
- Wang, Y.L.; Lapovok, R.; Wang, J.T.; Qi, Y.S.; Estrin, Y. Thermal behavior of copper processed by ECAP with and without back pressure. Mater. Sci. Eng. A 2015, 628, 21–29. [Google Scholar] [CrossRef]
- Dziaszyk, S.; Payton, E.J.; Friedel, F.; Marx, V.; Eggeler, G. On the characterization of recrystallized fraction using electron backscatter diffraction: A direct comparison to local hardness in an IF steel using nanoindentation. Mater. Sci. Eng. A 2010, 527, 7854–7864. [Google Scholar] [CrossRef]
- Sitarama Raju, K.; Ghanashyam Krishna, M.; Padmanabhan, K.A.; Subramanya Sarma, V.; Gurao, N.P.; Wilde, G. Microstructure evolution and hardness variation during annealing of equal channel angular pressed ultra-fine grained nickel subjected to 12 passes. J. Mater. Sci. 2011, 46, 2662–2671. [Google Scholar] [CrossRef]
- Gazder, A.A.; Sánchez-Araiza, M.; Jonas, J.J.; Pereloma, E.V. Evolution of recrystallization texture in a 0.78 wt.% Cr extra-low-carbon steel after warm and cold rolling. Acta Mater. 2011, 59, 4847–4865. [Google Scholar] [CrossRef]
- Polkowski, W.; Jóźwik, P.; Karczewski, K.; Bojar, Z. Evolution of crystallographic texture and strain in a fine-grained Ni3Al (Zr, B) intermetallic alloy during cold rolling. Arch. Civ. Mech. Eng. 2014, 14, 550–560. [Google Scholar] [CrossRef]
- Bisht, A.; Ray, N.; Jagadeesh, G.; Suwas, S. Microstructural and crystallographic response of shock-loaded pure copper. J. Mater. Res. 2017, 32, 1484–1498. [Google Scholar] [CrossRef]
- Hutchinson, W.B. Practical Aspects of Texture Control in Low Carbon Steels, Materials Science Forum; Trans Tech Publications Inc.: Zurich, Switzerland, 1994; pp. 1917–1928. [Google Scholar]
- Inagaki, H. Formation of {111} Recrystallization Texture in Polycrystalline Iron. Transa. Iron Steel Inst. Jpn. 1984, 24, 266–274. [Google Scholar] [CrossRef]
- Quadir, M.Z.; Duggan, B.J. Deformation banding and recrystallization of α fibre components in heavily rolled IF steel. Acta Mater. 2004, 52, 4011–4021. [Google Scholar] [CrossRef]
- Dorner, D.; Zaefferer, S.; Raabe, D. Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal. Acta Mater. 2007, 55, 2519–2530. [Google Scholar] [CrossRef]
- Hutchinson, B. Deformation microstructures and textures in steels. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 1999, 357, 1471–1485. [Google Scholar] [CrossRef]
- Böcker, A.; Klein, H.; Bunge, H. Development of cross-rolling textures in AlMn1. Texture Microstruct. 1990, 12, 155–174. [Google Scholar] [CrossRef]
- Dillamore, I.L.; Katoh, H. The mechanisms of recrystallization in cubic metals with particular reference to their orientation-dependence. Met. Sci. 1974, 8, 73–83. [Google Scholar] [CrossRef]
Roll Diameters Ratio | 1:1 | 1:1.3 | 1:1.6 | 1:2 | |
---|---|---|---|---|---|
Thickness Reduction per Pass | |||||
20% | × | - | - | × | |
30% | × | - | - | × | |
40% | × | - | - | × | |
50% | × | × | × | × | |
57% | × | × | × | × | |
65% | × | - | - | × | |
75% | × | × | × | × |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhinwal, S.S.; Toth, L.S.; Lapovok, R.; Hodgson, P.D. Tailoring One-Pass Asymmetric Rolling of Extra Low Carbon Steel for Shear Texture and Recrystallization. Materials 2019, 12, 1935. https://doi.org/10.3390/ma12121935
Dhinwal SS, Toth LS, Lapovok R, Hodgson PD. Tailoring One-Pass Asymmetric Rolling of Extra Low Carbon Steel for Shear Texture and Recrystallization. Materials. 2019; 12(12):1935. https://doi.org/10.3390/ma12121935
Chicago/Turabian StyleDhinwal, Satyaveer Singh, Laszlo S. Toth, Rimma Lapovok, and Peter Damian Hodgson. 2019. "Tailoring One-Pass Asymmetric Rolling of Extra Low Carbon Steel for Shear Texture and Recrystallization" Materials 12, no. 12: 1935. https://doi.org/10.3390/ma12121935
APA StyleDhinwal, S. S., Toth, L. S., Lapovok, R., & Hodgson, P. D. (2019). Tailoring One-Pass Asymmetric Rolling of Extra Low Carbon Steel for Shear Texture and Recrystallization. Materials, 12(12), 1935. https://doi.org/10.3390/ma12121935