Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces
Abstract
:1. Introduction
2. Materials
3. Methodology
3.1. Experimental Tests
3.2. Response Surface
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Santos, A.D.; Reis, A.; Duarte, J.F.; Teixeira, P.; Rocha, A.B.; Oliveira, M.C.; Alves, J.L.; Menezes, L. A benchmark for validation of numerical results in sheet metal forming. J. Mater. Process. Tech. 2004, 155, 1980–1985. [Google Scholar] [CrossRef]
- Aydemir, A.; De Vree, J.H.P.; Brekelmans, W.A.M.; Geers, M.G.D.; Sillekens, W.H.; Werkhoven, R.J. An adaptive simulation approach designed for tube hydroforming processes. J. Mater. Process. Tech. 2005, 159, 303–310. [Google Scholar] [CrossRef]
- Ting, D.; Yuqi, L.; Zhibing, Z.; Zhigang, L. Fast FE analysis system for sheet metal stamping—FASTAMP. J. Mater. Process. Tech. 2007, 187, 402–406. [Google Scholar] [CrossRef]
- Cuesta, I.I.; Alegre, J.M. Hardening evaluation of stamped aluminium alloy components using the small punch test. Eng. Fail. Anal. 2012, 26, 240–246. [Google Scholar] [CrossRef]
- Khuri, A.I.; Cornell, J.A. Statistics: Textbooks and monographs, 81. In Response Surfaces: Design and Analyses; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
- Kuehl, R.O. Diseño de Experimentos: Principios Estadísticos Para el Diseño y Análisis de Investigaciones; Thomson Learning: Toronto, ON, Canada, 2001. [Google Scholar]
- Montgomery, D.C. Diseño y análisis de experimentos; Grupo Editorial Iberoamérica: Madrid, Spain, 1991. [Google Scholar]
- Cuesta, I.I.; Alegre, J.M. Determination of plastic collapse load of pre-cracked Small Punch Test specimens by means of response surfaces. Eng. Fail. Anal. 2012, 23, 1–9. [Google Scholar] [CrossRef]
- Palanivel, R.; Koshy Mathews, P.; Murugan, N. Development of mathematical model to predict the mechanical properties of friction stir welded AA6351 aluminium alloy. J. Eng. Sci. Technol. Rev. 2011, 4, 25–31. [Google Scholar] [CrossRef]
- Kumar, P.M.; Kumar, B.C. Modeling of machining parameters for MRR in EDM using response surface methodology. Proc. NCMSTA 2008, 8, 534–542. [Google Scholar]
- Mondal, D.P.; Das, S.; Prasad, B.K. Study of erosive-corrosive wear characteristic of an aluminium alloy composite through factorial design of experiments. Wear 1998, 217, 1–6. [Google Scholar] [CrossRef]
- Shetty, R.; Pai, R.B.; Rao, S.S.; Kamath, V. Machinability study on discontinuously reinforced aluminium composites (DRACs) using response surface methodology and Taguchi’s design of experiments under dry cutting condition. Maejo Int. J. Sci. Technol. 2008, 2, 227–239. [Google Scholar]
- Rana, R.S.; Purohit, R.; Mishra, P.M.; Sahu, P.; Dwivedi, S. Optimization of mechanical properties of AA 5083 nano SiC composites using design of experiment technique. In Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3882–3890. [Google Scholar]
- Lin, S.; Nie, Z.; Huang, H.; Li, B. Annealing behavior of a modified 5083 aluminum alloy. In Materials and Design; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1607–1612. [Google Scholar]
- Sato, S.; Okoshi, N. Mechanical properties of 5083 and 7N01 aluminum alloy pre-deformed by simple tension. J. Jpn. Ins. Light Met. 1977, 27, 480–487. [Google Scholar] [CrossRef]
- Hecht, R.L.; Kannan, K. Superplasticity and Superplastic Forming; Ghosh, A.K., Bieler, T.R., Eds.; Minerals, Metals and Materials Society: Warrendale, PA, USA, 1995; p. 259. [Google Scholar]
- Kaibyshev, R.; Musin, F.; Lesuer, D.R.; Nieh, T.G. Superplastic behavior of an Al–Mg alloy at elevated temperatures. Mater. Sci. Eng. A 2003, 342, 169–177. [Google Scholar] [CrossRef]
- ASTM E 8M. Standard test methods of tension testing of metallic materials In Annual Book or ASTM Standards; American Society for Testing and Materials: West Conshohocken, PA, USA, 2001. [Google Scholar]
- Mathieu, D.; Beal, A.; Phan-Tan-Luu, R. NEMRODW, LPRAI, Marsella. Available online: http://www.nemrodw.com (accessed on 5 June 2019).
Mn (%) | Si (%) | Cr (%) | Cu (%) | Pb (%) | Fe (%) | Ti (%) | Mg (%) |
---|---|---|---|---|---|---|---|
0.436 | 0.186 | 0.083 | 0.063 | 0.016 | 0.393 | 0.012 | 4.449 |
Variable Parameters | |
---|---|
(min.) | [20,60] |
(°C) | [90,180] |
(%) | [0,15] |
Experiment Matrix | Experimentation Plan | Responses | |||||||
---|---|---|---|---|---|---|---|---|---|
Experiment NUM. | (min) | (°C) | (%) | (MPa) | (MPa) | (%) | |||
1 | –1 | –1 | –1 | 20 | 90 | 0 | 155.3 | 293.1 | 27.27 |
2 | 1 | –1 | –1 | 60 | 90 | 0 | 155.1 | 295.3 | 24.46 |
3 | –1 | 1 | –1 | 20 | 180 | 0 | 143.1 | 293.3 | 26.53 |
4 | 1 | 1 | –1 | 60 | 180 | 0 | 142.2 | 290.7 | 26.77 |
5 | –1 | –1 | 1 | 20 | 90 | 15 | 295.4 | 342.5 | 13.45 |
6 | 1 | –1 | 1 | 60 | 90 | 15 | 281.7 | 335.9 | 12.05 |
7 | –1 | 1 | 1 | 20 | 180 | 15 | 215.5 | 318.3 | 20.55 |
8 | 1 | 1 | 1 | 60 | 180 | 15 | 211.2 | 315.8 | 17.26 |
9 | −1.682 | 0 | 0 | 6.4 | 135 | 7.5 | 223.7 | 308.9 | 21.30 |
10 | 1.682 | 0 | 0 | 73.6 | 135 | 7.5 | 208.6 | 309.8 | 18.82 |
11 | 0 | −1.682 | 0 | 40 | 59.3 | 7.5 | 264.7 | 317.8 | 14.43 |
12 | 0 | 1.682 | 0 | 40 | 210.7 | 7.5 | 176.3 | 303.6 | 27.14 |
13 | 0 | 0 | −1.682 | 40 | 135 | −5.1# | 202.1 | 304.2 | 22.25 |
14 | 0 | 0 | 1.682 | 40 | 135 | 20.1 | 265.6 | 342.7 | 10.87 |
15 | 0 | 0 | 0 | 40 | 135 | 7.5 | 214.9 | 308.3 | 19.66 |
16 | 0 | 0 | 0 | 40 | 135 | 7.5 | 214.6 | 309.5 | 19.51 |
(Experiment 9 and 13 Deactivated) | ||||||
---|---|---|---|---|---|---|
Coefficient | Value | Significance (%) | Value | Significance (%) | Value | Significance (%) |
b0 | 214.41 | 0.0445 *** | 309.42 | <0.01 *** | 19.38 | 0.246 ** |
b1 | −1.58 | 2.89 * | −0.49 | 78.2 | −0.87 | 2.10 * |
b2 | −23.19 | 0.157 ** | −5.09 | 2.39 * | 2.52 | 0.723 ** |
b3 | 51.50 | 0.0890 *** | 14.58 | 0.0129 *** | −4.37 | 0.413 ** |
b11 | −1.76 | 3.18 * | −0.59 | 78.8 | 0.57 | 3.93 * |
b22 | 1.27 | 3.59 * | −0.35 | 86.9 | 0.88 | 2.53 * |
b33 | −13.26 | 0.381 ** | 3.57 | 11.3 | −0.50 | 4.12 * |
b12 | 0.56 | 8.6 | −0.47 | 84.0 | 0.24 | 10.0 |
b13 | −1.63 | 2.96 * | −0.85 | 71.7 | −0.36 | 6.8 |
b23 | −15.71 | 0.307 ** | −4.95 | 6.9 | 1.37 | 1.76 * |
Experimentation Plan | Responses | |||||
---|---|---|---|---|---|---|
Experiment NUM. | ||||||
17 | 40 | 135 | 17.87 | 259.1 | 338.2 | 12.38 |
18 | 15 | 180 | 0 | 143.4 | 301.2 | 25.0 |
19 | 15 | 180 | 0 | 142.3 | 301.7 | 23.7 |
Experiment NUM. | Exp. | Calc. | Diff. | Exp. | Calc. | Diff. | Exp. | Calc. | Diff. |
---|---|---|---|---|---|---|---|---|---|
17 | 259.1 | 260.2 | −1.1 | 338.2 | 336.3 | 1.9 | 12.38 | 12.4 | −0.02 |
18 | 143.4 | 139.9 | 3.5 | 301.2 | 297.1 | 4.1 | 25.0 | 26.5 | −1.5 |
19 | 142.3 | 139.9 | 2.4 | 301.7 | 297.1 | 4.6 | 23.7 | 26.5 | −2.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuesta, I.I.; Almaguer-Zaldivar, P.M.; Alegre, J.M. Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces. Materials 2019, 12, 1838. https://doi.org/10.3390/ma12111838
Cuesta II, Almaguer-Zaldivar PM, Alegre JM. Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces. Materials. 2019; 12(11):1838. https://doi.org/10.3390/ma12111838
Chicago/Turabian StyleCuesta, Isidoro Iván, Pavel Michel Almaguer-Zaldivar, and Jesús Manuel Alegre. 2019. "Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces" Materials 12, no. 11: 1838. https://doi.org/10.3390/ma12111838
APA StyleCuesta, I. I., Almaguer-Zaldivar, P. M., & Alegre, J. M. (2019). Mechanical Behaviour of Stamped Aluminium Alloy Components by Means of Response Surfaces. Materials, 12(11), 1838. https://doi.org/10.3390/ma12111838