The Preliminary Study of Water-Retention Related Properties of Biochar Produced from Various Feedstock at Different Pyrolysis Temperatures
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Physicochemical Properties of Biochar Samples
3.2. Hydrophobicity Index of Biochar Samples
3.3. Pore Structure of Biochar Samples
3.4. Water-Retention of Biochar Samples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation; Earthscan: London, UK, 2013; pp. 1–12. [Google Scholar]
- Jien, S. Physical Characteristics of Biochars and Their Effects on Soil Physical Properties. In Biochar from Biomass and Waste. Fundamentals and Applications; Ok, Y.S., Tsanget, D.C.W., Bolan, J., Novak, J.M., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 21–35. [Google Scholar]
- Kameyama, K.; Miyamoto, T.; Iwata, Y.; Shiono, T. Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil. Soil Sci. 2016, 181, 20–28. [Google Scholar] [CrossRef]
- Kinney, T.J.; Masiello, C.A.; Dugan, B.; Hockaday, W.C.; Dean, M.R.; Zygourakis, K.; Barnes, R.T. Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 2012, 41, 34–43. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Amonette, J.; Ippolito, J.A.; Lima, I.M.; Gaskin, J.; Das, K.C.; Steiner, C.; Ahmedna, M.; et al. Biochars impact on soil moisture storage in an Ultisol and two Aridisols. Soil Sci. 2012, 177, 310–320. [Google Scholar] [CrossRef]
- Mollinedo, J.; Schumacher, T.E.; Chintala, R. Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics. J. Anal. Appl. Pyrol. 2015, 114, 100–108. [Google Scholar] [CrossRef]
- Zhang, J.; You, C. Water holding capacity and absorption properties of wood chars. Energy Fuels 2013, 27, 2643–2648. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape and porosity act together to influence soil water properties. PLoS ONE 2017. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.; Johnson, M.G.; Dragila, M.I.; Kleber, M. Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass Bioenergy 2014, 61, 196–205. [Google Scholar] [CrossRef]
- Brewer, C.E.; Chuang, V.J.; Masiello, C.A.; Gonnermann, H.; Gao, X.; Dugan, B.; Driver, L.E.; Panzacchi, P.; Zygourakis, K.; Davies, C.A. New approaches to measuring biochar density and porosity. Biomass Bioenergy 2014, 66, 176–185. [Google Scholar] [CrossRef]
- Břendová, K.; Száková, J.; Lhotka, M.; Krulikovská, T.; Punčochář, M.; Tlustoš, P. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil? Environ. Geochem. Health 2017, 39, 1381–1395. [Google Scholar] [CrossRef]
- NEDO. Renewable Energy Technology White Paper, 2nd ed.; NEDO: Kawasaki, Japan, 2014.
- Standard Test Method for Chemical Analysis of Wood Charcoal; ASTM D1762-84; ASTM International: Conshohocken, PA, USA, 2007.
- Gao, X.; Masiello, C.A. Analysis of biochar porosity by pycnometry. In Biochar: A Guide to Analytical Methods; Singh, B., Camps-Arbestain, M., Lehmann, J., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 132–140. [Google Scholar]
- King, P.M. Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Aust. J. Soil Res. 1981, 19, 275–285. [Google Scholar] [CrossRef]
- Johnson, M.S.; Lehmann, J.; Steenhuis, T.S.; de Oliveira, L.V.; Fernandes, E.C.M. Spatial and temporal variability of soil water repellency of Amazonian pastures. Aust. J. Soil Res. 2005, 43, 319–326. [Google Scholar] [CrossRef]
- Washburn, E.W. Note on a method of determining the distribution of poresizes in a porous material. PNAS 1921, 7, 115–116. [Google Scholar] [CrossRef]
- Soil Science Society of America. Glossary of Soil ScienceTerms; SSSA: Madison, WI, USA, 1997. [Google Scholar]
- Dane, J.H.; Hopmans, J.W. Pressure plate extractor. In Methods of Soil Analysis. Part 4. Physical Methods; Dane, J.H., Topp, C., Eds.; SSSA: Madison, WI, USA, 2002; pp. 688–690. [Google Scholar]
- Jury, W.A.; Horton, R. Soil Physics, 6th ed.; John Wiley and Sons, Inc.: New York, NY, USA, 2004. [Google Scholar]
- Sun, H.; Hockaday, W.C.; Masiello, C.A; Zygourakis, K. Multiple controls on the chemical and physical structure of biochars. Ind. Eng. Chem. Res. 2012, 51, 3587–3597. [Google Scholar] [CrossRef]
- Jamison, V.C. Sand-silt suction column for determination of moisture retention. Soil Sci. Soc. Am. Proc. 1958, 22, 82–83. [Google Scholar] [CrossRef]
- Windeatt, J.H.; Ross, A.B.; Williams, P.T.; Forster, P.M.; Nahil, M.A.; Singh, S. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. J. Environ. Manag. 2014, 146, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.-M.; Dallmeyer, I.; Garcia-Perez, M. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Rehrah, D.; Bansode, R.R.; Hassan, O.; Ahmedna, M. Physico-chemical characterization of biochars from solid municipal waste for use in soil amendment. J. Anal. Appl. Pyro. 2016, 118, 42–53. [Google Scholar] [CrossRef]
- Kameyama, K.; Iwata, Y.; Miyamoto, T. Biochar Amendment of Soils According to their Physicochemical Properties. JARQ 2017, 51, 117–127. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Shan, R.; Li, X.; Pan, J.; Liu, X.; Deng, R.; Song, J. Characterization of 60 types of Chinese biomass waste and resultant biochars in terms of their candidacy for soil application. GCB Bioenergy 2017. [Google Scholar] [CrossRef]
- Chun, Y.; Sheng, G.; Chiou, C.T.; Xing, B. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 2004, 38, 4649–4655. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M.B.; Hay, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, 8877–8884. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, B.; Zhou, D.; Chen, W. Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. Environ. Sci. Technol. 2012, 46, 12476–12483. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef]
- Schimmelpfennig, S.; Glaser, B. One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars. J. Environ. Qual. 2012, 41, 1001–1013. [Google Scholar] [CrossRef]
- Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.W.; Steiner, C.; Das, K.C.; Ahmedna, M.; Rehrah, D.; Watts, D.W.; Busscher, W.J.; Schomberg, H. Characterization of Designer Biochar Produced at Different Temperatures and Their Effects on a Loamy Sand. Ann. Environ. Sci. 2009, 3, 243–248. [Google Scholar]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.; Dallmeyer, I.; Garcia-Pérez, M. The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Biomass Bioenergy 2017, 574, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Hyväluoma, J.; Hannula, M.; Arstila, K.; Wang, H.; Kulju, S.; Rasa, K. Effects of pyrolysis temperature on the hydrologically relevant porosity of willow biochar. J. Anal. Appl. Pyro. 2018, 134, 446–453. [Google Scholar] [CrossRef]
- Wildman, J.; Derbyshire, F. Origins and functions of macroporosity in activated carbons from coal and wood precursors. Fuel 1991, 70, 655–661. [Google Scholar] [CrossRef]
- Emmerich, F.G.; Luengo, C.A. Babassu charcoal: A sulfurless renewable thermo-reducing feedstock for steelmaking. Biomass Bioenergy 1996, 10, 41–44. [Google Scholar] [CrossRef]
- Freitas, J.C.C.; Cunha, A.G.; Emmerich, F.G. Physical and chemical properties of a Brazilian peat char as a function of HTT. Fuel 1997, 76, 229–232. [Google Scholar] [CrossRef]
Feedstock | Pyrolysis Temperature | Biochar Yield | Volatile Matter | Ash | C | H | N | S | O | Particle Density | pH | EC | MED |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
°C | %w/w | %w/w | %w/w | %w/w | %w/w | %w/w | %w/w | %w/w | mg m−3 | – | dS m−1 | mol L−1 | |
Wood-based Biomass | |||||||||||||
Japanese cedar (CE) | 400 | 41 | 58 | 0.1 | 72.0 | 4.2 | 1.6 | 0.0 | 22.1 | 1.30 | 7.8 | 0.2 | 2.8 |
600 | 28 | 26 | 1.7 | 87.7 | 2.2 | 2.4 | 0.0 | 6.0 | 1.45 | 8.8 | 0.4 | 0.7 | |
800 | 22 | 16 | 2.6 | 90.5 | 0.3 | 3.1 | 0.0 | 3.5 | 1.71 | 8.4 | 1.7 | 0.0 | |
Japanese cypress (CY) | 400 | 39 | 48 | 2.1 | 71.2 | 3.2 | 0.7 | 0.0 | 22.8 | 1.40 | 5.4 | 0.2 | 0.8 |
600 | 28 | 20 | 2.8 | 87.3 | 1.9 | 1.6 | 0.0 | 6.4 | 1.52 | 83 | 0.4 | 0.5 | |
800 | 23 | 10 | 4.0 | 91.8 | 1.0 | 1.0 | 0.0 | 2.2 | 1.81 | 9.1 | 0.5 | 0.2 | |
Moso bamboo (MB) | 400 | 28 | 40 | 6.1 | 73.3 | 2.7 | 1.3 | 0.0 | 16.6 | 1.26 | 7.4 | 1.9 | 0.3 |
600 | 28 | 29 | 8.3 | 83.2 | 1.2 | 2.1 | 0.0 | 5.2 | 1.63 | 10.3 | 3.9 | 0.0 | |
800 | 25 | 26 | 6.7 | 88.1 | 0.4 | 1.0 | 0.0 | 3.8 | 1.65 | 9.7 | 7.0 | 0.0 | |
Agricultural Residue | |||||||||||||
Rice husk (RH) | 400 | 59 | 38 | 47.9 | 37.2 | 1.2 | 1.3 | 0.0 | 12.4 | 1.60 | 6.7 | 0.7 | 0.2 |
600 | 48 | 27 | 54.9 | 39.5 | 0.3 | 1.9 | 0.0 | 3.4 | 1.69 | 10.2 | 1.0 | 0.2 | |
800 | 39 | 11 | 57.7 | 39.0 | 0.3 | 1.0 | 0.0 | 2.0 | 1.74 | 10.4 | 1.6 | 0.0 | |
Sugarcane bagasse (SB) | 400 | 38 | 56 | 12.4 | 65.4 | 3.6 | 1.0 | 1.3 | 16.3 | 1.16 | 5.0 | 0.2 | 3.3 |
600 | 22 | 34 | 18.6 | 75.3 | 1.7 | 0.7 | 0.0 | 3.8 | 1.36 | 7.8 | 0.2 | 1.2 | |
800 | 19 | 22 | 16.1 | 79.4 | 0.4 | 0.7 | 0.0 | 3.6 | 1.41 | 9.8 | 0.2 | 1.5 | |
Livestock Manure | |||||||||||||
Poultry manure (PM) | 400 | 68 | 28 | 48.4 | 34.3 | 1.5 | 5.1 | 0.0 | 10.7 | 1.71 | 10.8 | 10.2 | 1.3 |
600 | 62 | 17 | 56.7 | 33.8 | 0.3 | 3.7 | 0.0 | 5.5 | 1.73 | 12.0 | 18.8 | 0.0 | |
800 | 47 | 12 | 68.2 | 23.9 | 0.3 | 2.2 | 0.0 | 5.4 | 1.78 | 12.2 | 26.5 | 0.0 | |
Wastewater | |||||||||||||
Agricultural wastewater | 400 | 54 | 35 | 37.1 | 42.7 | 3.4 | 8.1 | 0.6 | 8.1 | 1.53 | 7.3 | 0.2 | 4.9 |
Sludge (WS) | 600 | 46 | 11 | 52.0 | 38.6 | 1.2 | 5.8 | 0.0 | 2.4 | 1.89 | 8.3 | 0.3 | 0.0 |
800 | 43 | 5 | 57.0 | 37.9 | 0.3 | 3.4 | 0.0 | 1.4 | 2.09 | 8.0 | 0.3 | 0.0 |
Feedstock | Pyrolysis Temperature | Total Volume | Macropores (> 75 μm) | Mesopores (30–75 μm) | Micropores (5–30 μm) | Ultra-Micropores (0.1–5 μm) | Cyptopores (<0.1 μm) | Pores Corresponds to Available Water Capacity (0.2–9 μm) |
---|---|---|---|---|---|---|---|---|
°C | (cm3 g−1) | (cm3 g−1) | (cm3 g−1) | (cm3 g−1) | (cm3 g−1) | (cm3 g−1) | (cm3 g−1) | |
Wood-based Biomass | ||||||||
Japanese cedar (CE) | 400 | 4.09 | 0.43 | 0.88 | 2.51 | 0.22 | 0.06 | 0.50 |
600 | 1.63 | 0.03 | 0.16 | 1.16 | 0.22 | 0.05 | 0.50 | |
800 | 1.85 | 0.27 | 0.25 | 0.95 | 0.36 | 0.03 | 0.90 | |
Japanese cypress | 400 | 2.67 | 0.35 | 0.42 | 1.65 | 0.19 | 0.06 | 0.49 |
(CY) | 600 | 1.71 | 0.02 | 0.12 | 1.32 | 0.21 | 0.05 | 0.51 |
800 | 1.74 | 0.32 | 0.26 | 0.49 | 0.65 | 0.02 | 0.89 | |
Moso bamboo (MB) | 400 | 0.99 | 0.01 | 0.07 | 0.22 | 0.54 | 0.15 | 0.52 |
600 | 0.99 | 0.01 | 0.06 | 0.20 | 0.54 | 0.18 | 0.54 | |
800 | 1.30 | 0.17 | 0.24 | 0.20 | 0.25 | 0.44 | 0.43 | |
Agricultural Residue | ||||||||
Rice husk (RH) | 400 | 0.84 | 0.15 | 0.16 | 0.13 | 0.33 | 0.08 | 0.32 |
600 | 0.57 | 0.03 | 0.04 | 0.08 | 0.33 | 0.08 | 0.33 | |
800 | 0.87 | 0.20 | 0.18 | 0.12 | 0.31 | 0.07 | 0.30 | |
Sugarcane bagasse | 400 | 3.23 | 0.22 | 0.53 | 1.23 | 1.15 | 0.11 | 1.61 |
(SB) | 600 | 2.91 | 0.19 | 0.41 | 1.04 | 1.12 | 0.14 | 1.48 |
800 | 2.71 | 0.38 | 0.35 | 0.89 | 0.92 | 0.17 | 1.32 | |
Livestock Manure | ||||||||
Poultry manure (PM) | 400 | 1.07 | 0.25 | 0.37 | 0.21 | 0.15 | 0.09 | 0.17 |
600 | 1.11 | 0.12 | 0.52 | 0.23 | 0.16 | 0.08 | 0.18 | |
800 | 1.12 | 0.18 | 0.34 | 0.32 | 0.17 | 0.11 | 0.19 | |
Wastewater | ||||||||
Agricultural | 400 | 0.49 | 0.10 | 0.18 | 0.09 | 0.04 | 0.09 | 0.05 |
wastewater | 600 | 0.26 | 0.02 | 0.07 | 0.03 | 0.04 | 0.10 | 0.04 |
Sludge (WS) | 800 | 0.52 | 0.06 | 0.27 | 0.06 | 0.04 | 0.09 | 0.04 |
Feedstock | Pyrolysis Temperature | Available Water Capacity (AWC) |
---|---|---|
°C | (g g−1) | |
Wood-based Biomass | ||
Japanese cedar (CE) | 400 | 0.12 (0.03) efg |
600 | 0.18 (0.03) defg | |
800 | 0.38 (0.10) bc | |
Japanese cypress (CY) | 400 | 0.28 (0.07) bcdef |
600 | 0.28 (0.00) bcdef | |
800 | 0.34 (0.11) bcd | |
Moso bamboo (MB) | 400 | 0.08 (0.01) g |
600 | 0.10 (0.03) efg | |
800 | 0.12 (0.03) efg | |
Agricultural Residue | ||
Rice husk (RH) | 400 | 0.11 (0.06) defg |
600 | 0.07 (0.00) g | |
800 | 0.03 (0.01) g | |
Sugarcane bagasse (SB) | 400 | 0.28 (0.02) cde |
600 | 0.71 (0.43) a | |
800 | 0.49 (0.15) b | |
Livestock Manure | ||
Poultry manure (PM) | 400 | 0.10 (0.03) fg |
600 | 0.07 (0.01) g | |
800 | 0.06 (0.01) g | |
Wastewater | ||
Agricultural wastewater | 400 | 0.01 (0.00) g |
Sludge (WS) | 600 | 0.01 (0.01) g |
800 | 0.04 (0.00) g |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kameyama, K.; Miyamoto, T.; Iwata, Y. The Preliminary Study of Water-Retention Related Properties of Biochar Produced from Various Feedstock at Different Pyrolysis Temperatures. Materials 2019, 12, 1732. https://doi.org/10.3390/ma12111732
Kameyama K, Miyamoto T, Iwata Y. The Preliminary Study of Water-Retention Related Properties of Biochar Produced from Various Feedstock at Different Pyrolysis Temperatures. Materials. 2019; 12(11):1732. https://doi.org/10.3390/ma12111732
Chicago/Turabian StyleKameyama, Koji, Teruhito Miyamoto, and Yukiyoshi Iwata. 2019. "The Preliminary Study of Water-Retention Related Properties of Biochar Produced from Various Feedstock at Different Pyrolysis Temperatures" Materials 12, no. 11: 1732. https://doi.org/10.3390/ma12111732
APA StyleKameyama, K., Miyamoto, T., & Iwata, Y. (2019). The Preliminary Study of Water-Retention Related Properties of Biochar Produced from Various Feedstock at Different Pyrolysis Temperatures. Materials, 12(11), 1732. https://doi.org/10.3390/ma12111732