Inhomogeneity of Free Volumes in Metallic Glasses under Tension
Abstract
:1. Introduction
2. Experiments and Simulations Section
3. Results and Discussion
3.1. MD Simulation with Synchrotron Radiation Data
3.2. Cluster Evolution under Stress
3.3. Atomic Structural Evolution under Stress
3.3.1. Characterization of Free Volumes in MGs
3.3.2. Inhomogeneous Change of Free Volumes under Stress
3.3.3. Atomic-Level Stress between Different Zones
3.3.4. Evolution of Atomic Shear Strain under Stress
3.4. Potential Studies on Micro-Mechanisms of Deformation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peker, A.; Johnson, W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 1993, 63, 2342–2344. [Google Scholar] [CrossRef]
- Salimon, A.I.; Ashby, M.F.; Brechet, Y.; Greer, A.L. Bulk metallic glasses: What are they good for? Mater. Sci. Eng. A 2004, 375, 385–388. [Google Scholar] [CrossRef]
- Telford, M. The case for bulk metallic glass. Mater. Today 2004, 7, 36–43. [Google Scholar] [CrossRef]
- Liu, Y.D.; Hata, S.; Wada, K.; Shimokohbe, A. Thermal, mechanical and electrical properties of Pd-based thin-film metallic glass. Jpn. J. Appl. Phys. 2001, 40, 5382–5388. [Google Scholar] [CrossRef]
- Zhang, Y.; Mendelev, M.I.; Wang, C.Z.; Ott, R.; Zhang, F.; Besser, M.F.; Ho, K.M.; Kramer, M.J. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study. Phys. Rev. B 2014, 90, 174101. [Google Scholar] [CrossRef] [Green Version]
- Johnson, W.L. Bulk amorphous metal-an emerging engineering material. JOM 2002, 54, 40–43. [Google Scholar] [CrossRef]
- Srolovitz, D.; Vitek, V.; Egami, T. An atomistic study of deformation of amorphous metals. Acta Metall. 1983, 31, 335–352. [Google Scholar] [CrossRef]
- Lorenz, C.D.; Stevens, M.J. Fracture behavior of Lennard-Jones glasses. Phys. Rev. E 2003, 68, 021802. [Google Scholar] [CrossRef]
- Lu, J.; Ravichandran, G.; Johnson, W.L. Deformation behavior of the Zr41.2Ti13.8CU12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 2003, 51, 3429–3443. [Google Scholar] [CrossRef]
- Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977, 25, 407–415. [Google Scholar] [CrossRef] [Green Version]
- Argon, A.S. Plastic deformation in metallic glasses. Acta Metall. 1979, 27, 47–58. [Google Scholar] [CrossRef]
- Wang, W.H. Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 2006, 99, 093506. [Google Scholar] [CrossRef]
- Wang, W.H. Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids. J. Appl. Phys. 2011, 110, 053521. [Google Scholar]
- Jiao, W.; Sun, B.A.; Wen, P.; Bai, H.Y.; Kong, Q.P.; Wang, W.H. Crossover from stochastic activation to cooperative motions of shear transformation zones in metallic glasses. Appl. Phys. Lett. 2013, 103, 081904. [Google Scholar] [CrossRef]
- Steif, P.S.; Spaepen, F.; Hutchinson, J.W. Strain localization in amorphous metals. Acta Metall. 1982, 30, 447–455. [Google Scholar] [CrossRef]
- Cao, A.J.; Cheng, Y.Q.; Ma, E. Structural processes that initiate shear localization in metallic glass. Acta Mater. 2009, 57, 5146–5155. [Google Scholar] [CrossRef]
- Cohen, M.H.; Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 1959, 31, 1164–1169. [Google Scholar] [CrossRef]
- Turnbull, D.; Cohen, M.H. Free-volume model of the amorphous phase: Glass transition. J. Chem. Phys. 1961, 34, 120–125. [Google Scholar] [CrossRef]
- Turnbull, D.; Cohen, M.H. On the free-volume model of the liquid-glass transition. J. Chem. Phys. 1970, 52, 3038–3041. [Google Scholar] [CrossRef]
- Mukherjee, S.; Schroers, J.; Zhou, Z.; Johnson, W.L.; Rhim, W.K. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater. 2004, 52, 3689–3695. [Google Scholar] [CrossRef]
- Hu, Q.; Zeng, X.R.; Fu, M.W. Characteristic free volumes of bulk metallic glasses: Measurement and their correlation with glass-forming ability. J. Appl. Phys. 2011, 109, 053520. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Zeng, X.R.; Fu, M.W. Characteristic free volume change of bulk metallic glasses. J. Appl. Phys. 2012, 111, 083523. [Google Scholar] [CrossRef] [Green Version]
- Wright, W.J.; Hufnagel, T.C.; Nix, W.D. Free volume coalescence and void formation in shear bands in metallic glass. J. Appl. Phys. 2003, 93, 1432–1437. [Google Scholar] [CrossRef]
- Argon, A.S.; Kuo, H.Y. Plastic flow in a disordered bubble raft (an analog of a metallic glass). Mater. Sci. Eng. 1979, 39, 101–109. [Google Scholar] [CrossRef]
- Sietsma, J.; Thijsse, B.J. Characterization of free volume in atomic models of metallic glasses. Phys. Rev. B 1995, 52, 3248–3255. [Google Scholar] [CrossRef] [Green Version]
- Haruyama, O.; Inoue, A. Free volume kinetics during sub-Tg structural relaxation of a bulk Pd40Ni40P20 metallic glass. Appl. Phys. Lett. 2006, 88, 1319060. [Google Scholar] [CrossRef]
- Zhang, Y.; Hahn, H. Characterization of the free volume in a Zr45.0Cu39.3Al7.0Ag8.7 bulk metallic glass by reverse Monte Carlo simulation and density measurements. J. Non-Cryst. Solids 2011, 357, 1420–1425. [Google Scholar] [CrossRef]
- Altounian, Z.; Tu, G.H.; Strom-Olsen, J.O. Crystallization characteristics of Cu-Zr metallic glasses from Cu70Zr30 to Cu25Zr75. J. Appl. Phys. 1982, 53, 4755–4760. [Google Scholar] [CrossRef]
- Guo, G.Q.; Wu, S.Y.; Luo, S.; Yang, L. How Can Synchrotron Radiation Techniques Be Applied for Detecting Microstructures in Amorphous Alloys? Metals 2015, 5, 2048–2057. [Google Scholar] [CrossRef] [Green Version]
- Ogata, S.; Shimizu, F.; Li, J.; Wakeda, M.; Shibutani, Y. Atomistic simulation of shear localization in Cu-Zr bulk metallic glass. Intermetallics 2006, 14, 1033–1037. [Google Scholar] [CrossRef]
- Sheng, H.W.; Luo, W.K.; Alamgir, F.M.; Bai, J.M.; Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006, 439, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wakeda, M.; Shibutani, Y.; Ogata, S.; Park, J. Relationship between local geometrical factors and mechanical properties for Cu-Zr amorphous alloys. Intermetallics 2007, 15, 139–144. [Google Scholar] [CrossRef]
- Bharathula, A.; Luo, W.; Windl, W.; Flores, K.M. Characterization of open volume regions in a simulated Cu-Zr metallic glass. Metall. Mater. Trans. A 2008, 39A, 1779–1785. [Google Scholar] [CrossRef]
- Sun, Y.L.; Shen, J.; Valladares, A.A. Atomic structure and diffusion in Cu60Zr40 metallic liquid and glass: Molecular dynamics simulations. J. Appl. Phys. 2009, 106, 073520. [Google Scholar] [CrossRef]
- Wu, S.Q.; Wang, C.Z.; Hao, S.G.; Zhu, Z.Z.; Ho, K.M. Energetics of local clusters in Cu64.5Zr35.5 metallic liquid and glass. Appl. Phys. Lett. 2010, 97, 021901. [Google Scholar] [CrossRef]
- Duan, G.; Xu, D.H.; Zhang, Q.; Zhang, G.Y.; Cagin, T.; Johnson, W.L.; Goddard, W.A. Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: Glass formation and atomic-level structure. Phys. Rev. B 2005, 71, 224208. [Google Scholar] [CrossRef]
- Yang, L.; Guo, G.Q.; Chen, L.Y.; Huang, C.L.; Ge, T.; Chen, D.; Liaw, P.K.; Saksl, K.; Ren, Y.; Zeng, Q.S.; et al. Atomic-scale mechanisms of the glass-forming ability in metallic glasses. Phys. Rev. Lett. 2012, 109, 105502. [Google Scholar] [CrossRef] [PubMed]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Wang, X.D.; Ruta, B.; Xiong, L.H.; Zhang, D.W.; Chushkin, Y.; Sheng, H.W.; Lou, H.B.; Cao, Q.P.; Jiang, J.Z. Free-volume dependent atomic dynamics in beta relaxation pronounced La-based metallic glasses. Acta Mater. 2015, 99, 290–296. [Google Scholar] [CrossRef]
- Park, K.W.; Shibutani, Y.; Falk, M.L.; Lee, B.J.; Lee, J.C. Shear localization and the plasticity of bulk amorphous alloys. Scr. Mater. 2010, 63, 231–234. [Google Scholar] [CrossRef]
- Park, K.W.; Fleury, E.; Seok, H.K.; Kim, Y.C. Deformation behaviors under tension and compression: Atomic simulation of Cu65Zr35 metallic glass. Intermetallics 2011, 19, 1168–1173. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Cao, A.J.; Sheng, H.W.; Ma, E. Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history. Acta Mater. 2008, 56, 5263–5275. [Google Scholar] [CrossRef]
- Park, K.W.; Jang, J.I.; Wakeda, M.; Shibutani, Y.; Lee, J.C. Atomic packing density and its influence on the properties of Cu-Zr amorphous alloys. Scr. Mater. 2007, 57, 805–808. [Google Scholar] [CrossRef]
- Park, K.W.; Lee, C.M.; Wakeda, M.; Shibutani, Y.; Falk, M.L.; Lee, J.C. Elastostatically induced structural disordering in amorphous alloys. Acta Mater. 2008, 56, 5440–5450. [Google Scholar] [CrossRef]
- Brostow, W.; Chybicki, M.; Laskowski, R.; Rybicki, J. Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials. Phys. Rev. B 1998, 57, 13448–13458. [Google Scholar] [CrossRef]
- Albano, F.; Falk, M.L. Shear softening and structure in a simulated three-dimensional binary glass. J. Chem. Phys. 2005, 122, 154508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, A.P. Icosahedral clusters, icosaheral order and stability of quasicrystals-a view of metallurgy. Sci. Technol. Adv. Mater. 2008, 9, 013008. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Zu, F.Q.; Zhang, W.J.; Wang, Z.Z.; Li, X.Y. Phase competition of Cu64Zr36 and its effect on glass forming ability of the alloy. Cryst. Res. Technol. 2013, 48, 11–15. [Google Scholar] [CrossRef]
- Wang, J.G.; Zhao, D.Q.; Pan, M.X.; Wang, W.H.; Song, S.X.; Nieh, T.G. Correlation between onset of yielding and free volume in metallic glasses. Scr. Mater. 2010, 62, 477–480. [Google Scholar] [CrossRef]
- Shi, B.; Xu, Y.; Li, C.; Jia, W.; Li, Z.; Li, J. Evolution of free volume and shear band intersections and its effect on hardness of deformed Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. J. Alloys Compd. 2016, 669, 167–176. [Google Scholar] [CrossRef]
- Ghidelli, M.; Gravier, S.; Blandin, J.J.; Djemia, P.; Mompiou, F.; Abadias, G.; Raskin, J.P.; Pardoen, T. Extrinsic mechanical size effects in thin ZrNi metallic glass films. Acta Mater. 2015, 90, 232–241. [Google Scholar] [CrossRef] [Green Version]
- Ghidelli, M.; Idrissi, H.; Gravier, S.; Blandin, J.J.; Raskin, J.P.; Schryvers, D.; Pardoen, T. Homogeneous flow and size dependent mechanical behavior in highly ductile Zr65Ni35 metallic glass films. Acta Mater. 2017, 131, 246–259. [Google Scholar] [CrossRef]
- Maass, R.; Samwer, K.; Arnold, W.; Volkert, C.A. A single shear band in a metallic glass: Local core and wide soft zone. Appl. Phys. Lett. 2014, 105, 171902. [Google Scholar] [CrossRef]
- Maass, R.; Birckigt, P.; Borchers, C.; Samwer, K.; Volkert, C.A. Long range stress fields and cavitation along a shear band in a metallic glass: The local origin of fracture. Acta Mater. 2015, 98, 94–102. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Yang, L. Free volume contributing to the different yield behaviors between tension and compression deformations in metallic glasses. Metals 2017, 7, 444. [Google Scholar] [CrossRef]
- Shimizu, F.; Ogata, S.; Li, J. Theory of shear banding in metallic glasses and molecular dynamics calculations. Mater. Trans. 2007, 48, 2923–2927. [Google Scholar] [CrossRef]
- Feng, S.D.; Jiao, W.; Jing, Q.; Qi, L.; Pan, S.P.; Li, G.; Ma, M.Z.; Wang, W.H.; Liu, R.P. Structural evolution of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis. Sci. Rep. 2016, 6, 36627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.H.; Li, J.H.; Liu, B.X. Proposed correlation of structure network inherited from producing techniques and deformation behavior for Ni-Ti-Mo metallic glasses via atomistic simulations. Sci. Rep. 2016, 6, 29722. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.F.; Zhang, C.Y.; Zhang, Y.W.; Zeng, K.Y.; Li, Y. Stress gradient enhanced plasticity in a monolithic bulk metallic glass. Intermetallics 2008, 16, 1190–1198. [Google Scholar] [CrossRef]
- Hassani, M.; Engels, P.; Raabe, D.; Varnik, F. Localized plastic deformation in a model metallic glass: A survey of free volume and local force distributions. J. Stat. Mech.-Theory Exp. 2016, 2016, 084006. [Google Scholar] [CrossRef]
- Lu, Z.; Jiao, W.; Wang, W.H.; Bai, H.Y. Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses. Phys. Rev. Lett. 2014, 113, 045501. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, J.J.; Greer, A.L. Temperature rise at shear bands in metallic glasses. Nat. Mater. 2006, 5, 15–18. [Google Scholar] [CrossRef]
- Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 2013, 74, 71–132. [Google Scholar] [CrossRef]
- Shrivastav, G.P.; Chaudhuri, P.; Horbach, J. Yielding of glass under shear: A directed percolation transition precedes shear-band formation. Phys. Rev. E 2016, 94, 042605. [Google Scholar] [CrossRef] [PubMed]
- Pampillo, C.A. Flow and fracture in amorphous alloys. J. Mater. Sci. 1975, 10, 1194–1227. [Google Scholar] [CrossRef]
- Schroers, J.; Johnson, W.L. Ductile bulk metallic glass. Phys. Rev. Lett. 2004, 93, 255506. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.K.; Zhao, D.Q.; Pan, M.X.; Wang, W.H.; Wu, Y.; Lewandowski, J.J. Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 2005, 94, 125510. [Google Scholar] [CrossRef]
- Li, H.Q.; Fan, C.; Tao, K.X.; Choo, H.; Liaw, P.K. Compressive behavior of a Zr-based metallic glass at cryogenic temperatures. Adv. Mater. 2006, 18, 752. [Google Scholar] [CrossRef]
- Vaks, V.G. Possible mechanism for formation of localized shear bands in amorphous alloys. Phys. Lett. A 1991, 159, 174–178. [Google Scholar] [CrossRef]
- Huang, R.; Suo, Z.; Prevost, J.H.; Nix, W.D. Inhomogeneous deformation in metallic glasses. J. Mech. Phys. Solids 2002, 50, 1011–1027. [Google Scholar] [CrossRef]
Percentage (%) | ||||
---|---|---|---|---|
Size (Å) | ≤0.2 | 0.2–0.3 | 0.3–0.4 | ≥0.4 |
Zr2Cu | 0 | 66.7 | 33.3 | 0 |
Coefficient | Fitting Line-1 | Fitting Line-2 | Fitting Line-3 | Fitting Line-4 |
---|---|---|---|---|
A (×10−2) | 0.3659 | −0.2407 | −0.4322 | −0.1106 |
B | 0.2931 | 0.2577 | 0.3511 | 0.1772 |
C | 0.6444 | 0.6503 | 0.6521 | 0.6489 |
Strain | Atomic Percentage (±0.0005%) | ||||
---|---|---|---|---|---|
Center | Transitional-1 | Transitional-2 | Marginal-1 | Marginal-2 | |
0% | 20.0029 | 19.9967 | 19.9962 | 20.0012 | 20.0030 |
2% | 19.9348 | 20.0106 | 20.0105 | 20.0216 | 20.0225 |
4% | 19.8685 | 20.0211 | 20.0212 | 20.0435 | 20.0457 |
6% | 19.8382 | 20.0278 | 20.0278 | 20.0529 | 20.0533 |
8% | 19.8103 | 20.0334 | 20.0335 | 20.0611 | 20.0617 |
10% | 19.8054 | 20.0341 | 20.0342 | 20.0631 | 20.0632 |
12% | 19.7989 | 20.0351 | 20.0349 | 20.0655 | 20.0656 |
14% | 19.7976 | 20.0353 | 20.0354 | 20.0656 | 20.0661 |
16% | 19.7975 | 20.0357 | 20.0356 | 20.0655 | 20.0657 |
18% | 19.7969 | 20.0358 | 20.0359 | 20.0656 | 20.0658 |
20% | 19.7973 | 20.0358 | 20.0358 | 20.0655 | 20.0656 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da, W.; Wang, P.-w.; Wang, Y.-f.; Li, M.-f.; Yang, L. Inhomogeneity of Free Volumes in Metallic Glasses under Tension. Materials 2019, 12, 98. https://doi.org/10.3390/ma12010098
Da W, Wang P-w, Wang Y-f, Li M-f, Yang L. Inhomogeneity of Free Volumes in Metallic Glasses under Tension. Materials. 2019; 12(1):98. https://doi.org/10.3390/ma12010098
Chicago/Turabian StyleDa, Wei, Peng-wei Wang, Yi-fu Wang, Ming-fei Li, and Liang Yang. 2019. "Inhomogeneity of Free Volumes in Metallic Glasses under Tension" Materials 12, no. 1: 98. https://doi.org/10.3390/ma12010098
APA StyleDa, W., Wang, P.-w., Wang, Y.-f., Li, M.-f., & Yang, L. (2019). Inhomogeneity of Free Volumes in Metallic Glasses under Tension. Materials, 12(1), 98. https://doi.org/10.3390/ma12010098