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Abstract: In this work, the deformation of Zr2Cu metallic glass (MG) under uniaxial tensile stress
was investigated at the atomic level using a series of synchrotron radiation techniques combined with
molecular dynamics simulation. A new approach to the quantitative detection of free volumes in MGs
was designed and it was found that free volumes increase in the elastic stage, slowly expand in the
yield stage, and finally reach saturation in the plastic stage. In addition, in different regions of the MG
model, free volumes exhibited inhomogeneity under stress, in terms of size, density, and distribution.
In particular, the expansion of free volumes in the center region was much more rapid than those in
the other regions. It is interesting that the density of free volumes in the center region abnormally
decreased with strain. It was revealed that the atomic-level stress between different regions may
contribute to the inhomogeneity of free volumes under stress. In addition, the inhomogeneous change
of free volumes during the deformation was confirmed by the evolution of local atomic shear strains
in different regions. The present work provides in-depth insight into the deformation mechanisms
of MGs.

Keywords: metallic glasses; synchrotron radiation; molecular dynamics; free volume;
deformation; microstructure

1. Introduction

Metallic glasses (MGs) have many potential applications due to their unique physical, chemical,
and mechanical properties, such as relatively high levels of strength and hardness [1–3], a superior
large elastic limit [4,5], excellent corrosion resistance, high wear resistance [6]. In particular the unique
mechanical properties of MGs have attracted intensive interest. However, so far, compared with
crystalline alloys, there is still a challenge to reveal the deformation mechanisms of MGs due to their
disordered nature [7–9]. To address this issue, various specific structural concepts or models have
been proposed, including shear transformation zones (STZs), flow units, and flexible volumes [10–14].
It was proposed that deformation occurs preferentially in some local regions, referred to as STZs [11],
which are characterized by a lower density of atomic packing [10]. The coalescence of these STZs can
form a shear band [15]. However, it is difficult to experimentally measure the shear localization at the
atomic scale due to the extremely short time and the very small scale lengths involved [16].

As a specific concept, free volume was proposed by Turnbull [17–19], and widely applied to
explain the glass formation in alloys [20–22]. It is supposed that free volumes may significantly affect
the deformation of MG. In particular, it was revealed that free volumes in a shear band increase with
strain, thereby decreasing the density of MG material and its resistance to deformation [23]. In addition,
it was suggested that shear viscosity can be appreciably reduced in locally dilated regions with high
concentrations of free volumes [15], and that the plastic deformation is related to the increase of free
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volumes [15,24]. In general, free volume is regarded as a key factor affecting the deformation of MGs.
The revealing of the deformation mechanisms from the free volume aspect was expected. So far,
although a number of experimental and theoretical investigations have been devoted to studying the
free volumes of MGs [25–27], it is still a challenge to quantitatively or directly detect or characterize
the free volumes, such a concept is ambiguous and elusive. Therefore, to understand the deformation
mechanisms in terms of free volume is still a long-standing issue [27].

In this work, a feasible scheme for quantitatively calculating free volumes was developed and
the deformation mechanisms characterized by the free volumes of MG were studied. A Zr2Cu binary
composition was selected as the research prototype for the following reasons: (1) Zr2Cu has both
amorphous and crystalline phases [28], which made it easy to calculate free volumes, and (2) the
simple system allowed us to study the microstructure of MGs under stress.

2. Experiments and Simulations Section

An alloy ingot with a Zr2Cu composition was fabricated by arc-melting Zr and Cu, with a
purity of 99.9 wt.%, in a Ti-gettered high-purity argon atmosphere. The ingot was melted at least
five times to ensure the compositional homogeneity. The corresponding amorphous ribbons were
prepared by melt-spinning, producing a cross section of 0.04 × 2 mm2. Subsequently, a synchrotron,
radiation-based, high-energy X-ray diffraction (XRD) measurement was performed to detect the fine
structure features of this ribbon sample. This was performed at beam line BW5 in the HASYLAB in
Germany. Furthermore, extended X-ray absorption fine structure (EXAFS) measurements for both
Zr and Cu K-edge were carried out using transmission mode at beam line BL14W1 in the Shanghai
Synchrotron Radiation Facility of China and beam line U7C in the National Synchrotron Radiation
Laboratory of China. Additionally, all of the experimental synchrotron radiation data was normalized
via a standard data-reduced procedure [29].

It is known that molecular dynamics (MD) simulation is a powerful tool for studying the structural
information of MGs, but this method does not usually fit the experimental data [30–36]. On the other
hand, reverse Monte-Carlo (RMC), simulating the synchrotron radiation experimental data, is another
effective method for probing fine structural information in MGs, but it lacks the chemical potential for
avoiding uncertainties during calculation [37]. To obtain a reliable structure model, the RMC and the
MD method should be combined. In other words, based on the structural model obtained from RMC
fitting with synchrotron-radiation XRD and EXAFS data, a further MD simulation was performed
to modify this model. The MD simulation was performed using the large-scale atomic/molecular
massively parallel simulator (LAMMPS) program [38]. This scheme is similar to that used for studying
MGs in previous work [39].

The Zr2Cu structural model obtained by MD simulation upon the RMC result was a cube
containing more than 40,000 atoms. Subsequently, this model was enlarged by reproducing itself
along the X-direction five times so that we could study the stretching process in this enlarged model
containing about 200,000 atoms. In order to solve the problem of the structural instability caused by
the reproduction of these cubic models, this enlarged model was relaxed 100 ps at 300 K within the
NPT (constant atom number, constant pressure, and constant temperature) ensemble under periodic
boundary conditions, thereby providing a stable structure model. After that, in another MD simulation,
this enlarged model was deformed by applying uniaxial tensile strain at a rate of 1 × 108 s−1 along the
X-direction. The temperature was maintained at 300 K. Periodic boundary conditions were imposed in
both the Y- and Z-directions. As a result, the evolution of this structural model during deformation
could be studied.



Materials 2019, 12, 98 3 of 14

3. Results and Discussion

3.1. MD Simulation with Synchrotron Radiation Data

The structural information obtained from the MD with RMC simulated model of the Zr2Cu
composition is shown in Figure 1, including the S(Q) curves, total pair distribution function G(r),
and Cu/Zr K-edge EXAFS signals. Both the simulated S(Q) and the EXAFS curves fit well with the
experimental curves, indicating that the MD simulation with the RMC result was successful. It was
shown that, beside the first strong peak, there were no sharp peaks in the S(Q) curve, suggesting
that this model was fully amorphous [37]. Based on this simulated structural model, atomic- and
cluster-level structural information can be deduced. Because all atoms were “frozen” in the simulated
structural model, the positions and sizes of atoms were determined, making it possible to probe the
free volumes.
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Figure 1. Synchrotron radiation data of a Zr2Cu sample, including: (a) structural factor S(Q), (b) pair
distribution function G(r), and (c) normalized Zr and Cu K-edge EXAFS curves. The solid and dashed
lines denote the experimental data and the MD simulation upon RMC result, respectively. The κ and
the χ(κ) represent the photoelectron wave vector and the κ-space EXAFS signal, respectively.

The simulated strain-stress curve of this enlarged Zr2Cu structural model under uniaxial tension
along the X-direction is shown in Figure 2. This simulated curve is in agreement with those calculated
in previous work [40]. It was found that the stress had a maximum value of 2.29 GPa at a strain of
about 8%, indicating the yield strength. When the strain increased, the strength dropped immediately
and reached a so-called quasi-steady stress flow [41] which was about 1.8 GPa. According to Cheng’s
work [42], the difference between the yield strength and the quasi-steady stress flow related to the
degree of softening during deformation; its magnitude may reflect the propensity for strain localization
in the flow region.
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Figure 2. The MD simulated uniaxial stress-strain curve of the Zr2Cu structural model under tension.
The inset is the enlarged model which was obtained by reproducing the MD and RMC simulated cubic
model along the X-direction five times. This enlarged model was divided into three kinds of regions
named center, transitional 1, 2, and marginal 1, 2.
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To study the microstructural evolution during deformation, deformed structural models at strains
of 2%, 4%, 8%, 12%, 16%, and 20%, were selected in this work. It is known that the deformation
under an applied stress is accompanied by some short-range structural changes in the amorphous
alloys [32,40,42–44]. Furthermore, because the as-prepared structural model is an enlarged one
constructed by reproducing the original cubic model along the X-direction five times, and the uniaxial
tension is also along the X-direction. This enlarged model was divided into three regions called the
center, the transitional, and the marginal region, as shown in the inset of Figure 2.

3.2. Cluster Evolution under Stress

Because it was revealed that cluster-level structural change may relate to the deformation of
MG [43], the evolution of various Voronoi clusters (VCs) was investigated using the Voronoi tessellation
method [45]. Figure 3 shows the distribution of some major VCs in the structural model that were
deformed at different strains. It was observed that the fraction of the <0,0,12,0> VC decreased with
the increase of the uniaxial tensile strain. This was consistent with previous results [40–42,44,46].
It is known that <0,0,12,0> VC is the so-called full icosahedron that possesses abundant five-fold
symmetries and is regarded as an indicator of high shear resistance, high packing density, and low
potential energy [47]. During the process of deformation, it was proposed that both <0,0,12,0> and
some distorted icosahedral VCs such as <0,1,10,2> [41], which are densely packed units, would collapse
to form loosely packed ones. It was observed that the changes of the fractions of these major VCs with
strains were very similar to each other in the three divided regions, suggesting that the cluster-level
change was almost the same along the X-direction. In addition, these major VCs sharply decreased in
all regions, indicating that all regions of this model were deformed by stress.
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Figure 3. Distribution of some major VCs such as (a) <0,0,12,0> and (b) <0,1,10,2> in the center,
transitional, and marginal regions of the structural model under tension.

3.3. Atomic Structural Evolution under Stress

3.3.1. Characterization of Free Volumes in MGs

It was suggested that, besides clusters, free volumes can also significantly contribute to the
deformation in MGs [23]. In the present work, a new computational approach that can quantitatively
characterize free volumes in amorphous alloys was designed. In one structural model, a probe sphere
with a changeable radius was selected and was allowed to move randomly throughout the model.
After it touched any of the position-determined atoms, a space that was not filled with atom(s) was
detected. We called it unfilled space. In detail, the first step was to find the center position of this probe
sphere in any tetrahedron made up of four neighboring atoms, by applying this equation:

Di = Dj, (1)



Materials 2019, 12, 98 5 of 14

where D was the distance between one neighboring atom and the center of a probe sphere, i and j
denoted any two atoms of this tetrahedron. The volume of a probe sphere can be expressed by:

VPS =
4
3

πR3
max, (2)

where Rmax denoted the maximal radius of this sphere, and could be obtained by:

Rmax = Di − Ri, (3)

where Ri was the radius of the i-th neighboring atom. The center of each unfilled space was strictly
defined. Any two neighboring unfilled spaces whose center distances were too small or too large were
merged or separated so that the overlapping of small unfilled spaces and the ignoring of large ones
could be excluded. Figure 4 is a diagrammatic sketch for searching all possible unfilled spaces in a
structural model. We emphasize that an unfilled space itself cannot denote the free volume directly [25].
These detected unfilled spaces were made up of both intrinsic unfilled spaces and free volumes [32].
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Figure 4. A diagrammatic sketch for searching all possible unfilled spaces in a structural model,
including three steps: (a) location of an unfilled space, (b) size or volume evaluation of an unfilled
space, and (c) the next unfilled space.

In a crystalline alloy, the unfilled spaces are called intrinsic unfilled spaces. They are formed by
the dense hard-sphere packing of atoms. Nevertheless, in MG, besides the intrinsic unfilled spaces,
there are other unfilled spaces that are called free volumes. It is known that there is a competitive
crystalline phase in the Zr2Cu composition [48], thus, it was suggested that the intrinsic unfilled spaces
in the glassy state should be similar to those in this crystal phase [32]. All of the intrinsic unfilled
spaces in the Zr2Cu tetragonal phase were calculated and the distributions are listed in Table 1. It was
found that, in this crystal model, there was no intrinsic unfilled space with a radius larger than 0.4 Å,
implying that intrinsic unfilled spaces in the corresponding Zr2Cu MG model should have radii shorter
than 0.4 Å. In other words, any unfilled space with a radius larger than 0.4 Å should be a free volume
rather than an intrinsic unfilled space. We have realized that some small free volumes with a radius
less than 0.4 Å do occur in the structural model. By subtracting the small unfilled spaces in the crystal
model from those in the MG model, some small free volumes could be estimated. However, such small
free volumes only accounted for a small fraction, 4.5%, of the total free volume. In addition, with the
increased strain, small unfilled spaces, including the intrinsic ones, and small free volumes decreased
sharply, while large free volumes increased. Therefore, these small free volumes can be ignored.

Table 1. Size distribution of intrinsic unfilled spaces detected by a structural model containing more
than 50,000 atoms of the Zr2Cu tetragonal phase.

Percentage (%)

Size (Å) ≤0.2 0.2–0.3 0.3–0.4 ≥0.4
Zr2Cu 0 66.7 33.3 0
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3.3.2. Inhomogeneous Change of Free Volumes under Stress

The sizes of free volumes with the radius larger than 0.4 Å in the MG structural model under
uniaxial tension were calculated and are shown in Figure 5a. It was observed that the average size of
free volumes increased slowly with the increase of strain, from about 0.568 to 0.595 Å. Additionally,
the sizes of free volumes in the different regions (center, transitional, and marginal) of this model
were calculated. It was surprising that, although the sizes of free volumes in these regions also
increased slowly with the increase of strain, the rates of rise between these three regions were different.
This indicated that, unlike clusters, the size change of free volume is not the same in the different zones,
implying an inhomogeneous nature of free volume in this MD model. The size differences between
the as-prepared and the deformed models were calculated and displayed in Figure 5b. It is worth
noting that, when strain reached 12%, the free volume size had an extraordinary increase of more than
3% in the center region, while that of the counterparts in the transitional and marginal regions was
less than 1%. This implied that free volumes probably expand with the increase of strain throughout
the enlarged model, in particular in the center region. We also noticed that the size increase of free
volume apparently gets slower when strain is more than 8%, and remains constant when strain is more
than 12%.
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strain in tension mode, including: (a) the sizes of free volumes and (b) the difference ratio of sizes at
different strains. All the curves of the center, transitional 1, 2, marginal 1, 2 regions and their averages
are plotted.

To learn more about the inhomogeneous expansion of free volumes during deformation, the total
free volume in each region of this model was also calculated and is plotted in Figure 6. As expected,
the evolution of total free volume had a similar trend to that of the size of free volumes. In particular,
the total free volume in the center zone sharply increased from about 6.25 × 104 to 6.85 × 104 Å3 when
strain was smaller than 8%. Subsequently, the total free volume slowly increased and reached an upper
limit value of about 6.92 × 104 Å3 when the strain was larger than 12%. The total free volume in both
the transitional and the marginal zones was similarly dependent on the strain. However, the change of
total free volumes in these two regions was much smaller than that of the center zone. This was in
accordance with what is shown in Figure 5.

Unlike crystal alloys with well-defined structural units (the so-called unit cells) and well-defined
defects (point defects or dislocations) that are sensitive to deformation, it has been proposed that the
short-range order structures (VCs) and some “defects” (free volumes) affect the deformation of MGs.
It has been suggested that some VCs, such as <0,0,12,0>, are sensitive to strain and apt at changing
into relatively loosely packed clusters. Such transformation was probably stopped in the plastic
stage (referring to Reference [30] and this work). We suppose that this was because of the relatively
small/large energy and structural barriers of this cluster-level transformation at relatively small/large
strains. Meanwhile, from both energetic and structural aspects, free volumes should have an upper
bound when MG is stretched [49]. When the strain is small, it is easy for free volumes to increase
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with strain to achieve new energy balance and structural stability. After the 8% strain, it probably gets
difficult to go on expanding free volumes, leading to an upper limit that indicates a saturation of free
volumes [30].
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Although the information of free volumes shown in Figures 4 and 5 implies the inhomogeneous
distribution of free volume during deformation, more direct evidence is required. Here, the number
density of free volumes (ηfv) was calculated via the following equation:

η f v =
N f v

Vu
, (4)

where Nfv and Vu are the number of free volumes and the space that contains these free volumes,
respectively. The change of number density may directly reflect the inhomogeneous nature of free
volumes during deformation. To explicitly demonstrate this evolution, a correlation between the
number density of free volumes and strain is plotted in Figure 7. It is interesting that the density of
free volumes decreased slowly with the increase of strain in the center region; this was quite different
from other zones and abnormal because it has been suggested that more free volumes should appear
when strain increases [50]. Nevertheless, we noticed that the number density decrease in the center
zone was much smaller than the increase of free volume size, implying that total free volumes were
probably more influenced by size than density. Therefore, it is possible that, in the center zone, the total
free volume had an increasing trend similar to that of size rather than density. In addition, it is worth
noting that the decrease or increase of free volume density in different zones also slowed when the
strain was larger than 8% and remained constant when the strain reached 12%. This was consistent
with the patterns shown in Figures 4 and 5. We tried to fit data of the center, transitional, and marginal
zones, as well as the average zone. We found that the best fitting lines of all these data were well
described by the exponential function:

Y = Ae−BX + C, (5)

where Y and X denoted the density of free volume and the strain, respectively. Additionally, A, B,
and C were coefficients or constants. All the values of A, B, and C of all the fitting lines are listed in
Table 2. The exponential function explained why the free volumes were saturated when the strain
was large. Moreover, it is interesting that the A value of the center region was positive while the
counterpart of the transitional, marginal, or average was negative.
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Table 2. The values of A, B, and C of all the fitting lines. All of the fitting lines can be expressed
by an exponential function. A, B, and C are coefficients or constants of this exponential function.
Fitting lines 1, 2, 3, and 4 correspond to the center, transitional, and marginal regions, and the average
one, respectively.

Coefficient Fitting Line-1 Fitting Line-2 Fitting Line-3 Fitting Line-4

A (×10−2) 0.3659 −0.2407 −0.4322 −0.1106
B 0.2931 0.2577 0.3511 0.1772
C 0.6444 0.6503 0.6521 0.6489

In addition, we know that bulk MGs with a thickness of more than 1 mm usually have good
glass-forming ability and almost no plasticity under tension. However, it is acknowledged that a
smaller MG may have better plasticity. In previous work studying the deformation behavior of the
ZrNi thin film MGs [51,52], the plasticity apparently increased with the decrease of the thickness
from 550 to 110 nanometers. For our model, it should be a very small MG because its size was only
38.0 nm × 14.5 nm × 7.2 nm, much smaller than that of the ZrNi thin film. Therefore, our model had a
long strain range, indicating good plasticity. In this sense, the relatively large plasticity was due to size
effect rather than uncertainties of MD simulation.

3.3.3. Atomic-Level Stress between Different Zones

We supposed that the inhomogeneous distribution of free volumes under tension, in particular
the abnormal density change of free volumes in the center zone, was probably related to atomic-level
stress in this model. To examine this scenario, further analysis is required. The atomic percentages
of the center, transitional, and marginal regions of the whole model, were calculated and are listed
in Table 3. It was found that, unlike the other two zones, the atomic fractions of the center region
got smaller with the increase of strain. In other words, a few atoms migrated from the center zone
to other regions, implying the appearance of atomic-level stress between these zones, as illustrated
in Figure 8. The combination of applied uniaxial stress and atomic-level stress made the atomic
percentage or the density of free volumes in the center zone different from their counterparts in the
other two regions. The center region was under larger total tensile stress, made up of the uniaxial
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tensile stress and the atomic-level tensile stress, which led to a rapid swelling of free volumes in the
center zone. When the strain reached 12%, the atomic percentage became constant in all three regions,
suggesting that atoms hardly left the center zone from then on, so that the atomic-level stress between
these regions probably disappeared. As a result, the free volumes were saturated in all three regions.
Since the scale of deformation-induced internal stresses was much bigger than the size of our computer
model, this model could not contain the shear bands that can form in real MGs, accompanied by
long-range (macroscopic) internal stresses [53,54]. Therefore, the deformation-induced internal stresses
could not be discussed in this work.
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Figure 8. A diagrammatic sketch of the atomic-level stress between the three divided regions in
this model. The upper and the lower panels indicate the stress corresponding to the 0% and 4%
strains, respectively. The black and celadon arrows stand for the applied stress and atomic-level
stress, respectively.

Table 3. Atomic percentages of the center, transitional, and marginal regions in the deformed structural
models. Note that all of these values are nearly 20% when the strain is zero.

Strain
Atomic Percentage (±0.0005%)

Center Transitional-1 Transitional-2 Marginal-1 Marginal-2

0% 20.0029 19.9967 19.9962 20.0012 20.0030
2% 19.9348 20.0106 20.0105 20.0216 20.0225
4% 19.8685 20.0211 20.0212 20.0435 20.0457
6% 19.8382 20.0278 20.0278 20.0529 20.0533
8% 19.8103 20.0334 20.0335 20.0611 20.0617
10% 19.8054 20.0341 20.0342 20.0631 20.0632
12% 19.7989 20.0351 20.0349 20.0655 20.0656
14% 19.7976 20.0353 20.0354 20.0656 20.0661
16% 19.7975 20.0357 20.0356 20.0655 20.0657
18% 19.7969 20.0358 20.0359 20.0656 20.0658
20% 19.7973 20.0358 20.0358 20.0655 20.0656

We have revealed that there is an abnormal decrease in density of free volumes in the center zone.
This had to be explained. It was revealed that the center zone is under a larger total tensile stress,
a combination of uniaxial tensile stress and atomic-level tensile stress. This total tensile stress caused
the rapid swelling of free volumes. This expansion may have increased the possibility to connect
or merge separated free volumes [55], leading to the abnormal decrease in density of free volumes
despite the increased total free volume. The evolution of free volumes in the center zone was studied.
It was found that neighboring free volumes merged with each other when subject to increased strain,
as shown in Figure 9. Concerning the transitional and marginal regions, the total tensile stress was
smaller than that of the center zone at the same strain. The expansion of free volumes was also smaller,
leading to a lower possibility of connecting or merging the neighboring free volumes. Therefore, unlike
the center zone, the density of free volumes in the transitional and marginal zones increased rather
than decreased with the strain.
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3.3.4. Evolution of Atomic Shear Strain under Stress

It has been suggested that the so-called local atomic shear strain, ηi
Mises [56], denotes the atomic

motions in local regions under stress and is related to the density of shear transformations [57,
58]. Meanwhile, the atomic motions probably affect the distribution of free volumes. Therefore,
we wondered whether the change of atomic shear strain was similar to that of free volumes in different
zones. Figure 10 shows a sequence of images that demonstrate the evolution of ηi

Mises in the center,
transitional, and marginal regions. It was observed that, when the strain was about 2%, a number of
atoms were activated by stress and atoms with relatively large ηi

Mises values were apt to separate into
local regions or clusters, such as those marked with circles. These separated local regions were very
similar to the local flow units of small strains [13]. When strain increased to 4% local regions got larger
or more atomic-activated regions appeared. It is worth noting that, in the center zone, the local regions
with the most active atoms propagated, coalesced, and nucleated, implying the formation of STZs,
while STZs were still absent in the transitional and marginal zones. When the strain increased to about
8%, STZs formed by the propagation of atomic-activated local regions and appear in all three zones.
Nevertheless, in the center zone, the ηi

Mises values in the STZs were apparently larger than those in the
transitional or marginal zones. All of this indicated that atoms in the center zone were more likely to be
activated by stress, concentrating in local regions where it was easier to form STZs. This is consistent
with the inhomogeneous distribution of free volumes in the center, transitional, and marginal regions.
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3.4. Potential Studies on Micro-Mechanisms of Deformation

As we know, flow units in MGs are extremely inhomogeneous at high stress or low
temperatures [59]. Flow units do not significantly differ from the surrounding areas in structure,
but they tend to have more free volumes that make them more active and susceptible to external
energy. When MG is deformed, these flow units are activated, leading to local flow deformation [60].
With the increase of strain, localized flow units may transform into plastic flow units [61] or form shear
bands [62–64], resulting in plastic deformation [65–67]. In addition, it has been suggested that a shear
band is initiated at a region with concentrated stress or excess free volumes [23,68] and starts around
the region of free-volume concentration with a scale of several atomic diameters [69,70]. During the
deformation in MG, free volumes in a shear band are expected to increase, thereby decreasing the
density of this material and its resistance to deformation. In this work, we revealed that, during a
tensile deformation, there were some atomic-level changes, in terms of free volumes, atomic-level
stress, and atomic shear strain. The evolution of free volumes was divided into three stages: rapid
and slow expansions, and saturation, roughly corresponding to the elastic, yield, and plastic stages,
respectively. In addition, free volumes exhibited an inhomogeneous response in different regions
under tension. In the future, we expect to study the deformation of MGs by combining the flow unit,
the STZ, and the free volume concepts or models.

4. Conclusions

In summary, a new computational method for quantitatively detecting free volumes was
developed. The underlying deformation mechanisms of MGs were investigated from the free volume
aspect. It was revealed that free volumes expanded with increased of strain and this expansion stopped
in the plastic stage. In addition, although free volumes were homogeneously distributed throughout
the as-prepared structural model, free volumes exhibited inhomogeneity in different zones of this
model under tension in terms of their size, density, and distribution. In particular, the expansion of free
volumes in the center region was much more rapid than in other places and the density of free volumes
decreased abnormally in the center zone. The inhomogeneous change of free volumes under stress
was due to the atomic-level stress between the different zones and could be validated by the evolution
of local atomic shear strains in these zones. This work may shed light on the micro-mechanisms of
deformation in glassy alloys.

Author Contributions: W.D., P.-w.W. and M.-f.L. carried out the experiments and collected the data; W.D., P.-w.W.
and Y.-f.W. performed the simulations and analyzed the simulation data; L.Y. proposed the idea, designed the
research plan, and wrote the paper.

Funding: This work was supported the Fundamental Research Funds for Central Universities (Grant
No. NE2015004).

Acknowledgments: The authors would like to thank the HASYLAB in Germany, the Shanghai Synchrotron
Radiation Facility in China, and the National Synchrotron Radiation Laboratory of China for the use of the
advanced synchrotron radiation facilities.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Peker, A.; Johnson, W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett.
1993, 63, 2342–2344. [CrossRef]

2. Salimon, A.I.; Ashby, M.F.; Brechet, Y.; Greer, A.L. Bulk metallic glasses: What are they good for?
Mater. Sci. Eng. A 2004, 375, 385–388. [CrossRef]

3. Telford, M. The case for bulk metallic glass. Mater. Today 2004, 7, 36–43. [CrossRef]
4. Liu, Y.D.; Hata, S.; Wada, K.; Shimokohbe, A. Thermal, mechanical and electrical properties of Pd-based

thin-film metallic glass. Jpn. J. Appl. Phys. 2001, 40, 5382–5388. [CrossRef]

http://dx.doi.org/10.1063/1.110520
http://dx.doi.org/10.1016/j.msea.2003.10.167
http://dx.doi.org/10.1016/S1369-7021(04)00124-5
http://dx.doi.org/10.1143/JJAP.40.5382


Materials 2019, 12, 98 12 of 14

5. Zhang, Y.; Mendelev, M.I.; Wang, C.Z.; Ott, R.; Zhang, F.; Besser, M.F.; Ho, K.M.; Kramer, M.J. Impact of
deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study.
Phys. Rev. B 2014, 90, 174101. [CrossRef]

6. Johnson, W.L. Bulk amorphous metal-an emerging engineering material. JOM 2002, 54, 40–43. [CrossRef]
7. Srolovitz, D.; Vitek, V.; Egami, T. An atomistic study of deformation of amorphous metals. Acta Metall. 1983,

31, 335–352. [CrossRef]
8. Lorenz, C.D.; Stevens, M.J. Fracture behavior of Lennard-Jones glasses. Phys. Rev. E 2003, 68, 021802.

[CrossRef]
9. Lu, J.; Ravichandran, G.; Johnson, W.L. Deformation behavior of the Zr41.2Ti13.8CU12.5Ni10Be22.5 bulk

metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 2003, 51, 3429–3443. [CrossRef]
10. Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall.

1977, 25, 407–415. [CrossRef]
11. Argon, A.S. Plastic deformation in metallic glasses. Acta Metall. 1979, 27, 47–58. [CrossRef]
12. Wang, W.H. Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 2006,

99, 093506. [CrossRef]
13. Wang, W.H. Correlation between relaxations and plastic deformation, and elastic model of flow in metallic

glasses and glass-forming liquids. J. Appl. Phys. 2011, 110, 053521.
14. Jiao, W.; Sun, B.A.; Wen, P.; Bai, H.Y.; Kong, Q.P.; Wang, W.H. Crossover from stochastic activation to

cooperative motions of shear transformation zones in metallic glasses. Appl. Phys. Lett. 2013, 103, 081904.
[CrossRef]

15. Steif, P.S.; Spaepen, F.; Hutchinson, J.W. Strain localization in amorphous metals. Acta Metall. 1982, 30,
447–455. [CrossRef]

16. Cao, A.J.; Cheng, Y.Q.; Ma, E. Structural processes that initiate shear localization in metallic glass. Acta Mater.
2009, 57, 5146–5155. [CrossRef]

17. Cohen, M.H.; Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 1959, 31, 1164–1169.
[CrossRef]

18. Turnbull, D.; Cohen, M.H. Free-volume model of the amorphous phase: Glass transition. J. Chem. Phys. 1961,
34, 120–125. [CrossRef]

19. Turnbull, D.; Cohen, M.H. On the free-volume model of the liquid-glass transition. J. Chem. Phys. 1970, 52,
3038–3041. [CrossRef]

20. Mukherjee, S.; Schroers, J.; Zhou, Z.; Johnson, W.L.; Rhim, W.K. Viscosity and specific volume of bulk
metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater. 2004, 52, 3689–3695.
[CrossRef]

21. Hu, Q.; Zeng, X.R.; Fu, M.W. Characteristic free volumes of bulk metallic glasses: Measurement and their
correlation with glass-forming ability. J. Appl. Phys. 2011, 109, 053520. [CrossRef]

22. Hu, Q.; Zeng, X.R.; Fu, M.W. Characteristic free volume change of bulk metallic glasses. J. Appl. Phys. 2012,
111, 083523. [CrossRef]

23. Wright, W.J.; Hufnagel, T.C.; Nix, W.D. Free volume coalescence and void formation in shear bands in
metallic glass. J. Appl. Phys. 2003, 93, 1432–1437. [CrossRef]

24. Argon, A.S.; Kuo, H.Y. Plastic flow in a disordered bubble raft (an analog of a metallic glass). Mater. Sci. Eng.
1979, 39, 101–109. [CrossRef]

25. Sietsma, J.; Thijsse, B.J. Characterization of free volume in atomic models of metallic glasses. Phys. Rev. B
1995, 52, 3248–3255. [CrossRef]

26. Haruyama, O.; Inoue, A. Free volume kinetics during sub-Tg structural relaxation of a bulk Pd40Ni40P20

metallic glass. Appl. Phys. Lett. 2006, 88, 1319060. [CrossRef]
27. Zhang, Y.; Hahn, H. Characterization of the free volume in a Zr45.0Cu39.3Al7.0Ag8.7 bulk metallic glass

by reverse Monte Carlo simulation and density measurements. J. Non-Cryst. Solids 2011, 357, 1420–1425.
[CrossRef]

28. Altounian, Z.; Tu, G.H.; Strom-Olsen, J.O. Crystallization characteristics of Cu-Zr metallic glasses from
Cu70Zr30 to Cu25Zr75. J. Appl. Phys. 1982, 53, 4755–4760. [CrossRef]

29. Guo, G.Q.; Wu, S.Y.; Luo, S.; Yang, L. How Can Synchrotron Radiation Techniques Be Applied for Detecting
Microstructures in Amorphous Alloys? Metals 2015, 5, 2048–2057. [CrossRef]

http://dx.doi.org/10.1103/PhysRevB.90.174101
http://dx.doi.org/10.1007/BF02822619
http://dx.doi.org/10.1016/0001-6160(83)90110-4
http://dx.doi.org/10.1103/PhysRevE.68.021802
http://dx.doi.org/10.1016/S1359-6454(03)00164-2
http://dx.doi.org/10.1016/0001-6160(77)90232-2
http://dx.doi.org/10.1016/0001-6160(79)90055-5
http://dx.doi.org/10.1063/1.2193060
http://dx.doi.org/10.1063/1.4819393
http://dx.doi.org/10.1016/0001-6160(82)90225-5
http://dx.doi.org/10.1016/j.actamat.2009.07.016
http://dx.doi.org/10.1063/1.1730566
http://dx.doi.org/10.1063/1.1731549
http://dx.doi.org/10.1063/1.1673434
http://dx.doi.org/10.1016/j.actamat.2004.04.023
http://dx.doi.org/10.1063/1.3549819
http://dx.doi.org/10.1063/1.4704688
http://dx.doi.org/10.1063/1.1531212
http://dx.doi.org/10.1016/0025-5416(79)90174-5
http://dx.doi.org/10.1103/PhysRevB.52.3248
http://dx.doi.org/10.1063/1.2189833
http://dx.doi.org/10.1016/j.jnoncrysol.2010.09.028
http://dx.doi.org/10.1063/1.331304
http://dx.doi.org/10.3390/met5042048


Materials 2019, 12, 98 13 of 14

30. Ogata, S.; Shimizu, F.; Li, J.; Wakeda, M.; Shibutani, Y. Atomistic simulation of shear localization in Cu-Zr
bulk metallic glass. Intermetallics 2006, 14, 1033–1037. [CrossRef]

31. Sheng, H.W.; Luo, W.K.; Alamgir, F.M.; Bai, J.M.; Ma, E. Atomic packing and short-to-medium-range order
in metallic glasses. Nature 2006, 439, 419–425. [CrossRef] [PubMed]

32. Wakeda, M.; Shibutani, Y.; Ogata, S.; Park, J. Relationship between local geometrical factors and mechanical
properties for Cu-Zr amorphous alloys. Intermetallics 2007, 15, 139–144. [CrossRef]

33. Bharathula, A.; Luo, W.; Windl, W.; Flores, K.M. Characterization of open volume regions in a simulated
Cu-Zr metallic glass. Metall. Mater. Trans. A 2008, 39A, 1779–1785. [CrossRef]

34. Sun, Y.L.; Shen, J.; Valladares, A.A. Atomic structure and diffusion in Cu60Zr40 metallic liquid and glass:
Molecular dynamics simulations. J. Appl. Phys. 2009, 106, 073520. [CrossRef]

35. Wu, S.Q.; Wang, C.Z.; Hao, S.G.; Zhu, Z.Z.; Ho, K.M. Energetics of local clusters in Cu64.5Zr35.5 metallic
liquid and glass. Appl. Phys. Lett. 2010, 97, 021901. [CrossRef]

36. Duan, G.; Xu, D.H.; Zhang, Q.; Zhang, G.Y.; Cagin, T.; Johnson, W.L.; Goddard, W.A. Molecular dynamics
study of the binary Cu46Zr54 metallic glass motivated by experiments: Glass formation and atomic-level
structure. Phys. Rev. B 2005, 71, 224208. [CrossRef]

37. Yang, L.; Guo, G.Q.; Chen, L.Y.; Huang, C.L.; Ge, T.; Chen, D.; Liaw, P.K.; Saksl, K.; Ren, Y.; Zeng, Q.S.; et al.
Atomic-scale mechanisms of the glass-forming ability in metallic glasses. Phys. Rev. Lett. 2012, 109, 105502.
[CrossRef] [PubMed]

38. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.
[CrossRef]

39. Wang, X.D.; Ruta, B.; Xiong, L.H.; Zhang, D.W.; Chushkin, Y.; Sheng, H.W.; Lou, H.B.; Cao, Q.P.;
Jiang, J.Z. Free-volume dependent atomic dynamics in beta relaxation pronounced La-based metallic glasses.
Acta Mater. 2015, 99, 290–296. [CrossRef]

40. Park, K.W.; Shibutani, Y.; Falk, M.L.; Lee, B.J.; Lee, J.C. Shear localization and the plasticity of bulk amorphous
alloys. Scr. Mater. 2010, 63, 231–234. [CrossRef]

41. Park, K.W.; Fleury, E.; Seok, H.K.; Kim, Y.C. Deformation behaviors under tension and compression: Atomic
simulation of Cu65Zr35 metallic glass. Intermetallics 2011, 19, 1168–1173. [CrossRef]

42. Cheng, Y.Q.; Cao, A.J.; Sheng, H.W.; Ma, E. Local order influences initiation of plastic flow in metallic glass:
Effects of alloy composition and sample cooling history. Acta Mater. 2008, 56, 5263–5275. [CrossRef]

43. Park, K.W.; Jang, J.I.; Wakeda, M.; Shibutani, Y.; Lee, J.C. Atomic packing density and its influence on the
properties of Cu-Zr amorphous alloys. Scr. Mater. 2007, 57, 805–808. [CrossRef]

44. Park, K.W.; Lee, C.M.; Wakeda, M.; Shibutani, Y.; Falk, M.L.; Lee, J.C. Elastostatically induced structural
disordering in amorphous alloys. Acta Mater. 2008, 56, 5440–5450. [CrossRef]

45. Brostow, W.; Chybicki, M.; Laskowski, R.; Rybicki, J. Voronoi polyhedra and Delaunay simplexes in
the structural analysis of molecular-dynamics-simulated materials. Phys. Rev. B 1998, 57, 13448–13458.
[CrossRef]

46. Albano, F.; Falk, M.L. Shear softening and structure in a simulated three-dimensional binary glass.
J. Chem. Phys. 2005, 122, 154508. [CrossRef] [PubMed]

47. Tsai, A.P. Icosahedral clusters, icosaheral order and stability of quasicrystals-a view of metallurgy. Sci. Technol.
Adv. Mater. 2008, 9, 013008. [CrossRef] [PubMed]

48. Cui, X.; Zu, F.Q.; Zhang, W.J.; Wang, Z.Z.; Li, X.Y. Phase competition of Cu64Zr36 and its effect on glass
forming ability of the alloy. Cryst. Res. Technol. 2013, 48, 11–15. [CrossRef]

49. Wang, J.G.; Zhao, D.Q.; Pan, M.X.; Wang, W.H.; Song, S.X.; Nieh, T.G. Correlation between onset of yielding
and free volume in metallic glasses. Scr. Mater. 2010, 62, 477–480. [CrossRef]

50. Shi, B.; Xu, Y.; Li, C.; Jia, W.; Li, Z.; Li, J. Evolution of free volume and shear band intersections and its effect
on hardness of deformed Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. J. Alloys Compd. 2016, 669, 167–176.
[CrossRef]

51. Ghidelli, M.; Gravier, S.; Blandin, J.J.; Djemia, P.; Mompiou, F.; Abadias, G.; Raskin, J.P.; Pardoen, T.
Extrinsic mechanical size effects in thin ZrNi metallic glass films. Acta Mater. 2015, 90, 232–241. [CrossRef]

52. Ghidelli, M.; Idrissi, H.; Gravier, S.; Blandin, J.J.; Raskin, J.P.; Schryvers, D.; Pardoen, T. Homogeneous flow
and size dependent mechanical behavior in highly ductile Zr65Ni35 metallic glass films. Acta Mater. 2017,
131, 246–259. [CrossRef]

http://dx.doi.org/10.1016/j.intermet.2006.01.022
http://dx.doi.org/10.1038/nature04421
http://www.ncbi.nlm.nih.gov/pubmed/16437105
http://dx.doi.org/10.1016/j.intermet.2006.04.002
http://dx.doi.org/10.1007/s11661-008-9503-8
http://dx.doi.org/10.1063/1.3245324
http://dx.doi.org/10.1063/1.3464164
http://dx.doi.org/10.1103/PhysRevB.71.224208
http://dx.doi.org/10.1103/PhysRevLett.109.105502
http://www.ncbi.nlm.nih.gov/pubmed/23005298
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1016/j.actamat.2015.08.010
http://dx.doi.org/10.1016/j.scriptamat.2010.03.063
http://dx.doi.org/10.1016/j.intermet.2011.03.024
http://dx.doi.org/10.1016/j.actamat.2008.07.011
http://dx.doi.org/10.1016/j.scriptamat.2007.07.019
http://dx.doi.org/10.1016/j.actamat.2008.07.033
http://dx.doi.org/10.1103/PhysRevB.57.13448
http://dx.doi.org/10.1063/1.1885000
http://www.ncbi.nlm.nih.gov/pubmed/15945646
http://dx.doi.org/10.1088/1468-6996/9/1/013008
http://www.ncbi.nlm.nih.gov/pubmed/27877926
http://dx.doi.org/10.1002/crat.201200337
http://dx.doi.org/10.1016/j.scriptamat.2009.12.015
http://dx.doi.org/10.1016/j.jallcom.2016.01.239
http://dx.doi.org/10.1016/j.actamat.2015.02.038
http://dx.doi.org/10.1016/j.actamat.2017.03.072


Materials 2019, 12, 98 14 of 14

53. Maass, R.; Samwer, K.; Arnold, W.; Volkert, C.A. A single shear band in a metallic glass: Local core and wide
soft zone. Appl. Phys. Lett. 2014, 105, 171902. [CrossRef]

54. Maass, R.; Birckigt, P.; Borchers, C.; Samwer, K.; Volkert, C.A. Long range stress fields and cavitation along a
shear band in a metallic glass: The local origin of fracture. Acta Mater. 2015, 98, 94–102. [CrossRef]

55. Wang, P.; Li, H.; Yang, L. Free volume contributing to the different yield behaviors between tension and
compression deformations in metallic glasses. Metals 2017, 7, 444. [CrossRef]

56. Shimizu, F.; Ogata, S.; Li, J. Theory of shear banding in metallic glasses and molecular dynamics calculations.
Mater. Trans. 2007, 48, 2923–2927. [CrossRef]

57. Feng, S.D.; Jiao, W.; Jing, Q.; Qi, L.; Pan, S.P.; Li, G.; Ma, M.Z.; Wang, W.H.; Liu, R.P. Structural evolution
of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis. Sci. Rep. 2016,
6, 36627. [CrossRef] [PubMed]

58. Yang, M.H.; Li, J.H.; Liu, B.X. Proposed correlation of structure network inherited from producing techniques
and deformation behavior for Ni-Ti-Mo metallic glasses via atomistic simulations. Sci. Rep. 2016, 6, 29722.
[CrossRef]

59. Wu, W.F.; Zhang, C.Y.; Zhang, Y.W.; Zeng, K.Y.; Li, Y. Stress gradient enhanced plasticity in a monolithic bulk
metallic glass. Intermetallics 2008, 16, 1190–1198. [CrossRef]

60. Hassani, M.; Engels, P.; Raabe, D.; Varnik, F. Localized plastic deformation in a model metallic glass: A survey
of free volume and local force distributions. J. Stat. Mech.-Theory Exp. 2016, 2016, 084006. [CrossRef]

61. Lu, Z.; Jiao, W.; Wang, W.H.; Bai, H.Y. Flow unit perspective on room temperature homogeneous plastic
deformation in metallic glasses. Phys. Rev. Lett. 2014, 113, 045501. [CrossRef] [PubMed]

62. Lewandowski, J.J.; Greer, A.L. Temperature rise at shear bands in metallic glasses. Nat. Mater. 2006, 5, 15–18.
[CrossRef]

63. Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 2013, 74, 71–132.
[CrossRef]

64. Shrivastav, G.P.; Chaudhuri, P.; Horbach, J. Yielding of glass under shear: A directed percolation transition
precedes shear-band formation. Phys. Rev. E 2016, 94, 042605. [CrossRef] [PubMed]

65. Pampillo, C.A. Flow and fracture in amorphous alloys. J. Mater. Sci. 1975, 10, 1194–1227. [CrossRef]
66. Schroers, J.; Johnson, W.L. Ductile bulk metallic glass. Phys. Rev. Lett. 2004, 93, 255506. [CrossRef] [PubMed]
67. Xi, X.K.; Zhao, D.Q.; Pan, M.X.; Wang, W.H.; Wu, Y.; Lewandowski, J.J. Fracture of brittle metallic glasses:

Brittleness or plasticity. Phys. Rev. Lett. 2005, 94, 125510. [CrossRef]
68. Li, H.Q.; Fan, C.; Tao, K.X.; Choo, H.; Liaw, P.K. Compressive behavior of a Zr-based metallic glass at

cryogenic temperatures. Adv. Mater. 2006, 18, 752. [CrossRef]
69. Vaks, V.G. Possible mechanism for formation of localized shear bands in amorphous alloys. Phys. Lett. A

1991, 159, 174–178. [CrossRef]
70. Huang, R.; Suo, Z.; Prevost, J.H.; Nix, W.D. Inhomogeneous deformation in metallic glasses. J. Mech.

Phys. Solids 2002, 50, 1011–1027. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.4900791
http://dx.doi.org/10.1016/j.actamat.2015.06.062
http://dx.doi.org/10.3390/met7100444
http://dx.doi.org/10.2320/matertrans.MJ200769
http://dx.doi.org/10.1038/srep36627
http://www.ncbi.nlm.nih.gov/pubmed/27819352
http://dx.doi.org/10.1038/srep29722
http://dx.doi.org/10.1016/j.intermet.2008.07.004
http://dx.doi.org/10.1088/1742-5468/2016/08/084006
http://dx.doi.org/10.1103/PhysRevLett.113.045501
http://www.ncbi.nlm.nih.gov/pubmed/25105632
http://dx.doi.org/10.1038/nmat1536
http://dx.doi.org/10.1016/j.mser.2013.04.001
http://dx.doi.org/10.1103/PhysRevE.94.042605
http://www.ncbi.nlm.nih.gov/pubmed/27841596
http://dx.doi.org/10.1007/BF00541403
http://dx.doi.org/10.1103/PhysRevLett.93.255506
http://www.ncbi.nlm.nih.gov/pubmed/15697909
http://dx.doi.org/10.1103/PhysRevLett.94.125510
http://dx.doi.org/10.1002/adma.200501990
http://dx.doi.org/10.1016/0375-9601(91)90267-C
http://dx.doi.org/10.1016/S0022-5096(01)00115-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experiments and Simulations Section 
	Results and Discussion 
	MD Simulation with Synchrotron Radiation Data 
	Cluster Evolution under Stress 
	Atomic Structural Evolution under Stress 
	Characterization of Free Volumes in MGs 
	Inhomogeneous Change of Free Volumes under Stress 
	Atomic-Level Stress between Different Zones 
	Evolution of Atomic Shear Strain under Stress 

	Potential Studies on Micro-Mechanisms of Deformation 

	Conclusions 
	References

