Study of Agave Fiber-Reinforced Biocomposite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Agave Fibers
2.3. Preparation of Biocomposite Film
2.4. Characterization
2.4.1. Scanning Electron Microscopy (SEM)
2.4.2. Mechanical Analysis
2.4.3. Differential Scanning Calorimetry (DSC)
2.4.4. Fourier-Transform Infrared (FT-IR) Spectroscopy
3. Results and Discussion
3.1. Morphology
3.2. FT-IR Analysis of Composite Films
3.3. Mechanical Properties
3.4. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Rosa, M.F.; Chiou, B.S.; Medeiros, E.S.; Wood, D.F.; Williams, T.G.; Mattoso, L.H.C.; Orts, W.J.; Imam, S.H. Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresour. Technol. 2009, 100, 5196–5202. [Google Scholar] [CrossRef] [PubMed]
- Park, B.D.; Balatinecz, J.J. Mechanical properties of wood-fiber/toughened isotactic polypropylene composites. Polym. Compos. 1997, 18, 79–89. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Misra, M.; Mohanty, A.K. Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties. J. Appl. Polym. Sci. 2006, 102, 4856–4869. [Google Scholar] [CrossRef]
- Das, K.; Ray, D.; Bandyopadhyay, N.R.; Sahoo, S.; Mohanty, A.K.; Misra, M. Physico-mechanical properties of the jute micro/nanofibril reinforced starch/polyvinyl alcohol biocomposite films. Compos. Part B Eng. 2011, 42, 376–381. [Google Scholar] [CrossRef]
- Singha, A.S.; Rana, R.K. Natural fiber reinforced polystyrene composites: Effect of fiber loading, fiber dimensions and surface modification on mechanical properties. Mater. Des. 2012, 41, 289–297. [Google Scholar] [CrossRef]
- Julson, J.L.; Subbarao, G.; Stokke, D.D.; Gieselman, H.H.; Muthukumarappan, K. Mechanical properties of biorenewable fiber/plastic composites. J. Appl. Polym. Sci. 2004, 93, 2484–2493. [Google Scholar] [CrossRef]
- Sathishkumar, T.; Navaneethakrishnan, P.; Shankar, S.; Rajasekar, R.; Rajini, N. Characterization of natural fiber and composites—A review. J. Reinf. Plast. Compos. 2013, 32, 1457–1476. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, C.H. Direct impregnation of thermoplastic melt into flax textile reinforcement for semi-structural composite parts. Ind. Crops Prod. 2017, 95, 651–663. [Google Scholar] [CrossRef]
- Lahtela, V.; Mustonen, K.; Kärki, T. The effect of primary sludge on the mechanical performance of high-density polyethylene composites. Ind. Crops Prod. 2017, 104, 129–132. [Google Scholar] [CrossRef]
- Mylsamy, K.; Rajendran, I. Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites. Mater. Des. 2011, 32, 4629–4640. [Google Scholar] [CrossRef]
- López-Bañuelos, R.H.; Moscoso, F.J.; Ortega-Gudiño, P.; Mendizabal, E.; Rodrigue, D.; González-Núñez, R. Rotational molding of polyethylene composites based on agave fibers. Polym. Eng. Sci. 2012, 52, 2489–2497. [Google Scholar] [CrossRef]
- Singha, A.; Rana, R.K. Preparation and properties of agave fiber-reinforced polystyrene composites. J. Thermoplast. Compos. Mater. 2011, 26, 513–526. [Google Scholar] [CrossRef]
- Pérez-Fonseca, A.A.; Robledo-Ortíz, J.R.; Ramirez-Arreola, D.E.; Ortega-Gudiño, P.; Rodrigue, D.; González-Núñez, R. Effect of hybridization on the physical and mechanical properties of high density polyethylene–(pine/agave) composites. Mater. Des. 2014, 64, 35–43. [Google Scholar] [CrossRef]
- Cisneros-López, E.O.; Anzaldo, J.; Fuentes-Talavera, F.J.; González-Núñez, R.; Robledo-Ortíz, J.R.; Rodrigue, D. Effect of agave fiber surface treatment on the properties of polyethylene composites produced by dry-blending and compression molding. Polym. Compos. 2017, 38, 96–104. [Google Scholar] [CrossRef]
- Cisneros-Lopez, E.O.; Perez-Fonseca, A.A.; Fuentes-Talavera, F.J.; Anzaldo, J.; Gonzalez-Nunez, R.; Rodrigue, D.; Robledo-Ortíz, J.R. Rotomolded polyethylene-agave fiber composites: effect of fiber surface treatment on the mechanical properties. Polym. Eng. Sci. 2016, 56, 856. [Google Scholar] [CrossRef]
- Corral, F.S.; Nava, L.A.C.; Hernández, E.H.; Gámez, J.F.H.; Velázquez, M.G.N.; Sierra, M.I.M.; Morones, P.G.; Gómez, R.E.D.D.L. Plasma Treatment of Agave Fiber Powder and Its Effect on the Mechanical and Thermal Properties of Composites Based on Polyethylene. Int. J. Polym. Sci. 2016, 2016, 7. [Google Scholar] [CrossRef]
- Moscoso, F.J.; Martínez, L.; Canche, G.; Rodrigue, D.; González-Núñez, R. Morphology and properties of polystyrene/agave fiber composites and foams. J. Appl. Polym. Sci. 2013, 127, 599–606. [Google Scholar] [CrossRef]
- Zuccarello, B.; Scaffaro, R. Experimental analysis and micromechanical models of high performance renewable agave reinforced biocomposites. Compos. Part B Eng. 2017, 119, 141–152. [Google Scholar] [CrossRef]
- Zuccarello, B.; Zingales, M. Toward high performance renewable agave reinforced biocomposites: Optimization of fiber performance and fiber-matrix adhesion analyses. Compos. Part B Eng. 2017, 122, 109–120. [Google Scholar] [CrossRef]
- Adam, J.; Korneliusz, B.A.; Agnieszka, M. Dynamic mechanical thermal analysis of biocomposites based on PLA and PHBV—A comparative study to PP counterparts. J. Appl. Polym. Sci. 2013, 130, 3175–3183. [Google Scholar] [CrossRef]
- Pérez-Fonseca, A.A.; Arellano, M.; Rodrigue, D.; González-Núñez, R.; Robledo-Ortíz, J.R. Effect of coupling agent content and water absorption on the mechanical properties of coir-agave fibers reinforced polyethylene hybrid composites. Polym. Compos. 2016, 37, 3015–3024. [Google Scholar] [CrossRef]
- Lin, Q.; Zhou, X.; Dai, G. Effect of hydrothermal environment on moisture absorption and mechanical properties of wood flour–filled polypropylene composites. J. Appl. Polym. Sci. 2002, 85, 2824–2832. [Google Scholar] [CrossRef]
- Íñiguez, G.; Valadez, A.; Manríquez, R.; Moreno, M.V. Utilization of by-products from the tequila industry. Part 10: characterization of different decomposition stages of agave tequilana webber bagasse using ftir spectroscopy, thermogravimetric analysis and scanning electron microscopy. Revista Internacional de Contaminación Ambiental 2011, 27, 61–74. [Google Scholar]
- Szymanska-Chargot, M.; Zdunek, A. Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophys. 2013, 8, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Morent, R.; De Geyter, N.; Leys, C.; Gengembre, L.; Payen, E. Comparison between XPS-and FTIR-analysis of plasma-treated polypropylene film surfaces. Surf. Interface Anal. 2008, 40, 597–600. [Google Scholar] [CrossRef]
- Sciarratta, V.; Vohrer, U.; Hegemann, D.; Müller, M.; Oehr, C. Plasma functionalization of polypropylene with acrylic acid. Surf. Coat. Technol. 2003, 174, 805–810. [Google Scholar] [CrossRef]
- Socrates, G. Infrared And Raman Characteristic Group Frequencies: Tables And Charts; John Wiley & Sons: West Sussex, UK, 2004. [Google Scholar]
- Torres-Tello, E.V.; Robledo-Ortíz, J.R.; González-García, Y.; Pérez-Fonseca, A.A.; Jasso-Gastinel, C.F.; Mendizábal, E. Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Ind. Crops Prod. 2017, 99 (Suppl. C), 117–125. [Google Scholar] [CrossRef]
- Lei, Y.; Wu, Q.; Yao, F.; Xu, Y. Preparation and properties of recycled HDPE/natural fiber composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1664–1674. [Google Scholar] [CrossRef]
- Li, Y.; Mai, Y.-W.; Ye, L. Sisal fibre and its composites: a review of recent developments. Compos. Sci. Technol. 2000, 60, 2037–2055. [Google Scholar] [CrossRef]
- Geethamma, V.; Mathew, K.T.; Lakshminarayanan, R.; Thomas, S. Composite of short coir fibres and natural rubber: effect of chemical modification, loading and orientation of fibre. Polymer 1998, 39, 1483–1491. [Google Scholar] [CrossRef]
- Tang, C.; Chen, D.; Tsui, C.; Uskokovic, P.; Yu, P.H.; Leung, M.C. Nonisothermal melt-crystallization kinetics of hydroxyapatite-filled poly (3-hydroxybutyrate) composites. J. Appl. Polym. Sci. 2006, 102, 5388–5395. [Google Scholar] [CrossRef]
The extrusion temperature (°C) parameters of extrusion for compounding (twin screw extruder) | ||||||||||||
Heating Zone | 1 (feeder) | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11(die) | |
Resin | LLDPE | 70 | 160 | 165 | 170 | 175 | 180 | 170 | 175 | 170 | 165 | 165 |
HDPE | 70 | 165 | 170 | 175 | 170 | 185 | 185 | 180 | 175 | 170 | 165 | |
PP | 70 | 170 | 195 | 200 | 210 | 215 | 215 | 210 | 205 | 200 | 190 | |
The extrusion temperature (°C) parameters of extrusion for films (single screw extruder) | ||||||||||||
Heating Zone | 1 (feeder) | 2 | 3 | 4 | 5 (die) | |||||||
Resin | LLDPE | 90 | 165 | 180 | 175 | 165 | ||||||
HDPE | 90 | 175 | 185 | 180 | 170 | |||||||
PP | 90 | 150 | 190 | 180 | 180 |
Fiber Ratio (wt %) | Elastic Modulus (MPa) | Standard Deviation | Yield Stress (MPa) | Standard Deviation | Specific Yield Strength (kN·m/kg) | |
---|---|---|---|---|---|---|
LLDPE: agave fiber | 0 | 88.4 | 9.29 | 1.9 | 0.51 | 1.83 |
5 | 241.5 | 27.16 | 2.0 | 0.15 | 2.13 | |
10 | 266.7 | 41.65 | 2.1 | 0.06 | 2.09 | |
20 | 370.7 | 46.55 | 3.5 | 0.35 | 3.55 | |
30 | 324.2 | 43.64 | 3.3 | 0.29 | 3.23 | |
HDPE: agave fiber | 0 | 435.1 | 50.83 | 3.8 | 0.06 | 3.99 |
5 | 617.6 | 42.58 | 5.1 | 0.1 | 5.28 | |
10 | 657.6 | 68.23 | 4.8 | 0.47 | 4.89 | |
20 | 736.0 | 82.06 | 5.4 | 0.64 | 5.34 | |
30 | 640.3 | 56.38 | 5.8 | 0.12 | 5.68 | |
PP: agave fiber | 0 | 560.4 | 40.04 | 8.1 | 0.51 | 9.33 |
5 | 766.7 | 118.18 | 6.1 | 0.23 | 6.9 | |
10 | 829.7 | 40.73 | 7.0 | 0.65 | 7.78 | |
20 | 882.7 | 48.31 | 9.0 | 0.76 | 9.63 | |
30 | 738.8 | 111.43 | 9.1 | 1.17 | 9.36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annandarajah, C.; Li, P.; Michel, M.; Chen, Y.; Jamshidi, R.; Kiziltas, A.; Hoch, R.; Grewell, D.; Montazami, R. Study of Agave Fiber-Reinforced Biocomposite Films. Materials 2019, 12, 99. https://doi.org/10.3390/ma12010099
Annandarajah C, Li P, Michel M, Chen Y, Jamshidi R, Kiziltas A, Hoch R, Grewell D, Montazami R. Study of Agave Fiber-Reinforced Biocomposite Films. Materials. 2019; 12(1):99. https://doi.org/10.3390/ma12010099
Chicago/Turabian StyleAnnandarajah, Cindu, Peng Li, Mitchel Michel, Yuanfen Chen, Reihaneh Jamshidi, Alper Kiziltas, Richard Hoch, David Grewell, and Reza Montazami. 2019. "Study of Agave Fiber-Reinforced Biocomposite Films" Materials 12, no. 1: 99. https://doi.org/10.3390/ma12010099
APA StyleAnnandarajah, C., Li, P., Michel, M., Chen, Y., Jamshidi, R., Kiziltas, A., Hoch, R., Grewell, D., & Montazami, R. (2019). Study of Agave Fiber-Reinforced Biocomposite Films. Materials, 12(1), 99. https://doi.org/10.3390/ma12010099