Investigation of Energy Transfer in Star-Shaped White Polymer Light-Emitting Devices via the Time-Resolved Photoluminescence
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Fabrication of Devices and Measurements
3. Results and Discussions
3.1. Electrical Characteristics of the Devices
3.2. The Time-Resolved Photoluminescence and Energy Transfer within the White-Light Copolymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, B.; Luo, D.; Zou, J.; Gao, D.; Ning, H.; Wang, L.; Peng, J.; Cao, Y. A host–guest system comprising high guest concentration to achieve simplified and high-performance hybrid white organic light-emitting diodes. J. Mater. Chem. C 2015, 3, 6359–6366. [Google Scholar] [CrossRef]
- Hu, S.; Zhu, M.; Zou, Q.; Wu, H.; Yang, C.; Wong, W.; Yang, W.; Peng, J.; Cao, Y. Efficient hybrid white polymer light-emitting devices with electroluminescence covered the entire visible range and reduced efficiency roll-off. Appl. Phys. Lett. 2012, 100, 63304. [Google Scholar] [CrossRef]
- Zou, J.; Liu, J.; Wu, H.; Yang, W.; Peng, J.; Cao, Y. High-efficiency and good color quality white light-emitting devices based on polymer blend. Org. Electron. 2009, 10, 843–848. [Google Scholar] [CrossRef]
- Vollbrecht, J.; Wiebeler, C.; Neuba, A.; Bock, H.; Schumacher, S.; Kitzerow, H. Bay-Extended, distorted perylene esters showing visible luminescence after ultraviolet excitation: Photophysical and electrochemical analysis. J. Phys. Chem. C 2016, 120, 7839–7848. [Google Scholar] [CrossRef]
- Shoustikov, A.; You, Y.; Thompson, M. Electroluminescence color tuning by dye doping in organic Light-Emitting diodes. IEEE J. Sel. Top. Quant. 1998, 4, 3–13. [Google Scholar] [CrossRef]
- Vollbrecht, J.; Blazy, S.; Dierks, P.; Peurifoy, S.; Bock, H.; Kitzerow, H. Electroluminescent and optoelectronic properties of OLEDs with Bay-Extended, distorted perylene esters as emitter materials. ChemPhysChem 2017, 18, 2024–2032. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Qin, Z.; Huang, J. Progress on material, structure and function for tandem organic light-emitting diodes. Org. Electron. 2017, 51, 220–242. [Google Scholar] [CrossRef]
- Zhao, D.; Wu, M.; Qin, R.; Yu, J. Low dark-current and high-photodetectivity transparent organic ultraviolet photodetector by using polymer-modified ZnO as the electron transfer layer. Opt. Lett. 2018, 43, 3212–3215. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guo, X.; Bu, L.; Xie, Z.; Cheng, Y.; Geng, Y.; Wang, L.; Jing, X.; Wang, F. White electroluminescence from a single-polymer system with simultaneous two-color emission: Polyfluorene blue host and side-chain-located orange dopant. Adv. Funct. Mater. 2007, 17, 1917–1925. [Google Scholar] [CrossRef]
- Liu, J.; Shao, S.; Chen, L.; Xie, Z.; Cheng, Y.; Geng, Y.; Wang, L.; Jing, X.; Wang, F. White electroluminescence from a single polymer system: Improved performance by means of enhanced efficiency and red-shifted luminescence of the blue-light-emitting species. Adv. Mater. 2007, 19, 1859–1863. [Google Scholar] [CrossRef]
- Luo, J.; Li, X.; Hou, Q.; Peng, J.; Yang, W.; Cao, Y. High-efficiency white-light emission from a single copolymer: Fluorescent blue, green, and red chromophores on a conjugated polymer backbone. Adv. Mater. 2007, 19, 1113–1117. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Pei, Q. Conjugated polymer as host for high efficiency blue and white electrophosphorescence. Macromolecules 2011, 44, 2451–2456. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Tsuboi, T.; Xu, H.; Wu, Y.; Zhang, Z.; Miao, Y.; Hao, Y.; Liu, X.; Xu, B.; Huang, W. Energy transfer in polyfluorene copolymer used for white-light organic light emitting device. Org. Electron. 2013, 14, 827–838. [Google Scholar] [CrossRef]
- Vollbrecht, J. Excimers in organic electronics. New J. Chem. 2018, 42, 11249–11254. [Google Scholar] [CrossRef]
- Jiu, Y.; Liu, C.; Wang, J.; Lai, W.; Jiang, Y.; Xu, W.; Zhang, X.; Huang, W. Saturated and stabilized white electroluminescence with simultaneous three-color emission from a six-armed star-shaped single-polymer system. Polym. Chem. 2015, 6, 8019–8028. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, Z.; Zhou, Z.; Yao, H.; Lv, W.; Zhen, H.; Ling, Q. White light-emitting devices based on star-shape like polymers with diarylmaleimde fluorophores on the side chain of polyfluorene arms. Org. Electron. 2016, 31, 183–190. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, F.; Liu, B.; Xu, Z.; Zhang, J.; Wang, Y. Emission colour-tunable phosphorescent organic light-emitting diodes based on the self-absorption effect and excimer emission. J. Phys. D Appl. Phys. 2013, 46, 15104. [Google Scholar] [CrossRef]
- Sun, J.; Yang, J.; Zhang, C.; Wang, H.; Li, J.; Su, S.; Xu, H.; Zhang, T.; Wu, Y.; Wong, W.; Xu, B. A novel white-light-emitting conjugated polymer derived from polyfluorene with a hyperbranched structure. New J. Chem. 2015, 39, 518–5188. [Google Scholar] [CrossRef]
- Chen, L.; Li, P.; Cheng, Y.; Xie, Z.; Wang, L.; Jing, X.; Wang, F. White electroluminescence from star-like single polymer systems: 2,1,3-Benzothiadiazole derivatives dopant as orange cores and polyfluorene host as six blue arms. Adv. Mater. 2011, 23, 2986–2990. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, Y.; Cao, X.; Jiang, B.; Wu, H.; Qin, J.; Cao, Y.; Yang, C. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core. Macromol. Rapid Comm. 2014, 35, 2071–2076. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, H.; Xu, H.; Zhang, T.; Li, L.; Li, J.; Wu, Y.; Xu, B.; Zhang, X.; Lai, W. A novel high-efficiency white hyperbranched polymer derived from polyfluorene with green and red iridium(III) complexes as the cores. Dyes Pigm. 2016, 130, 191–201. [Google Scholar] [CrossRef]
- Jiu, Y.; Wang, J.; Yi, J.; Liu, C.; Zhang, X.; Lai, W.; Huang, W. High-color-quality white electroluminescence and amplified spontaneous emission from a star-shaped single-polymer system with simultaneous three-color emission. Polym. Chem. 2017, 8, 851–859. [Google Scholar] [CrossRef]
- Yan, Q.; Yue, K.; Yu, C.; Zhao, D. Oligo- and polyfluorene-tetheredfac-Ir(ppy)3: Substitution effects. Macromolecules 2010, 43, 8479–8487. [Google Scholar] [CrossRef]
- Liu, C.; Jiu, Y.; Wang, J.; Yi, J.; Zhang, X.; Lai, W.; Huang, W. Star-shaped single-polymer systems with simultaneous RGB emission: Design, synthesis, saturated white electroluminescence, and amplified spontaneous emission. Macromolecules 2016, 49, 2549–2558. [Google Scholar] [CrossRef]
- Zhao, Y.; Yao, H.; Wei, K.; Zhen, H.; Yang, E.; Lin, Z.; Ling, Q. Dual-core star-shaped single white polymers: The effect of host structure on luminescence properties. Phys. Chem. Chem. Phys. 2017, 19, 12642–12646. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Cai, C.; Takamatsu, J.; Kido, J. A host material with a small singlet–triplet exchange energy for phosphorescent organic light-emitting diodes: Guest, host, and exciplex emission. Org. Electron. 2012, 13, 1937–1947. [Google Scholar] [CrossRef]
- Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.E.; Ruseckas, A.; Samuel, I.D.W. Distance dependence of excitation energy transfer between spacer-separated conjugated polymer films. Phys. Rev. B 2008, 78, 245201. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, J.; Liao, X.; Hou, M.; Chen, W.; Li, J.; Wang, H.; Li, L. Poly(9,9-dioctylfluorene) based hyperbranched copolymers with three balanced emission colors for solution-processable hybrid white polymer light-emitting devices. Dyes Pigm. 2017, 139, 611–618. [Google Scholar] [CrossRef]
- Zuo, G.; Li, Z.; Andersson, O.; Abdalla, H.; Wang, E.; Kemerink, M. Molecular doping and trap filling in organic semiconductor host–guest systems. J. Phys. Chem. C 2017, 121, 7767–7775. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Z.; Yang, C.; Tao, Y.; Zou, Y.; Qin, J.; Cao, Y. Stable white electroluminescence from single fluorene-based copolymers: Using fluorenone as the green fluorophore and an iridium complex as the red phosphor on the main chain. J. Mater. Chem. 2008, 18, 291–298. [Google Scholar] [CrossRef]
- Mandoc, M.M.; de Boer, B.; Paasch, G.; Blom, P.W.M. Trap-limited electron transport in disordered semiconducting polymers. Phys. Rev. B 2007, 75, 193202. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Yoo, S.; Kim, K.; Kim, J. Langevin and trap-assisted recombination in phosphorescent organic light emitting diodes. Adv. Funct. Mater. 2014, 24, 4681–4688. [Google Scholar] [CrossRef]
- Wehrmeister, S.; Ger, L.J.; Wehlus, T.; Rausch, A.F.; Reusch, T.C.G.; Schmidt, T.D.; Brütting, W. Combined electrical and optical analysis of the efficiency roll-off in phosphorescent organic light-emitting diodes. Phys. Rev. Appl. 2015, 3, 24008. [Google Scholar] [CrossRef]
- Huang, J.; Goh, T.; Li, X.; Sfeir, M.Y.; Bielinski, E.A.; Tomasulo, S.; Lee, M.L.; Hazari, N.; Taylor, A.D. Polymer bulk heterojunction solar cells employing Forster resonance energy transfer. Nat. Photonics 2013, 7, 480–486. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Wang, R.; Chi, Z.; Yu, J. Hybrid white organic light-emitting devices consisting of a non-doped thermally activated delayed fluorescent emitter and an ultrathin phosphorescent emitter. J. Lumin. 2017, 184, 287–292. [Google Scholar] [CrossRef]
- Wetzelaer, G.A.H.; Kuik, M.; Nicolai, H.T.; Blom, P.W.M. Trap-assisted and Langevin-type recombination in organic light-emitting diodes. Phys. Rev. B 2011, 83, 165204. [Google Scholar] [CrossRef]
- Jiang, Z.; Ye, T.; Yang, C.; Yang, D.; Zhu, M.; Zhong, C.; Qin, J.; Ma, D. Star-shaped oligotriarylamines with planarized triphenylamine core: Solution-processable, high-Tg hole-injecting and hole-transporting materials for organic light-emitting devices. Chem. Mater. 2011, 23, 771–777. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, C.; Lin, G.; Nie, H.; Luo, W.; Zhuang, Z.; Ding, S.; Hu, R.; Su, S.; Huang, F.; et al. Solution-processable, star-shaped bipolar tetraphenylethene derivatives for the fabrication of efficient nondoped OLEDs. J. Mater. Chem. C 2016, 4, 2775–2783. [Google Scholar] [CrossRef]
Device | Composition (Green:Red) | Max CE (cd·A−1) | Max PE (lm·W−1) | CIE a | CRI a |
---|---|---|---|---|---|
A1 | 1:1 | 5.9 | 2.1 | (0.34, 0.35) | 83 |
A2 | 0.5:1 | 6.4 | 2.3 | (0.33, 0.32) | 91 |
A3 | 0.5:0.8 | 5.2 | 2 | (0.27, 0.34) | 86 |
A4 | 0.5:0.5 | 5.3 | 1.8 | (0.27, 0.26) | 65 |
Polymer | Et (%) | ||||
---|---|---|---|---|---|
Solution | Film | Solution | Film | ||
PFO | 85 | 40 | 676 | 380 | – |
P1 | 80 | 28 | 467 | 221 | 57.5 |
P2 | 83 | 47 | 471 | 230 | 55.7 |
P3 | 84 | 42 | 472 | 240 | 53.8 |
P4 | 88 | 39 | 470 | 263 | 49.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Liao, X.; Cheng, J.; Li, Y.; Yu, J.; Li, L. Investigation of Energy Transfer in Star-Shaped White Polymer Light-Emitting Devices via the Time-Resolved Photoluminescence. Materials 2018, 11, 1719. https://doi.org/10.3390/ma11091719
He H, Liao X, Cheng J, Li Y, Yu J, Li L. Investigation of Energy Transfer in Star-Shaped White Polymer Light-Emitting Devices via the Time-Resolved Photoluminescence. Materials. 2018; 11(9):1719. https://doi.org/10.3390/ma11091719
Chicago/Turabian StyleHe, Hui, Xiaoqing Liao, Jiang Cheng, Ying Li, Junsheng Yu, and Lu Li. 2018. "Investigation of Energy Transfer in Star-Shaped White Polymer Light-Emitting Devices via the Time-Resolved Photoluminescence" Materials 11, no. 9: 1719. https://doi.org/10.3390/ma11091719
APA StyleHe, H., Liao, X., Cheng, J., Li, Y., Yu, J., & Li, L. (2018). Investigation of Energy Transfer in Star-Shaped White Polymer Light-Emitting Devices via the Time-Resolved Photoluminescence. Materials, 11(9), 1719. https://doi.org/10.3390/ma11091719