Spheroidization of Nickel Powder and Coating with Carbon Layer through Laser Heating
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hsiao, C.; Kung, W.; Song, J.; Chang, J.; Chang, T. Development of Cu-Ag pastes for high temperature sustainable bonding. Mater. Sci. Eng. A 2017, 684, 500–509. [Google Scholar] [CrossRef]
- Choi, E.B.; Lee, J. Ethylene glycol-based Ag plating for the wet chemical fabrication of one micrometer Cu/Ag core/shell particles. J. Alloys Compd. 2015, 643, S231–S235. [Google Scholar] [CrossRef]
- Park, Y.; An, C.Y.; Kannan, P.K.; Seo, N.; Zhuo, K.; Yoo, T.K.; Chung, C. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation. Appl. Surf. Sci. 2016, 389, 865–873. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Shi, D.; Jia, X.; Wang, X.; Borgna, A.; Lau, R.; Yang, Y. Methane reforming with carbon dioxide over a Ni/ZiO2–SiO2 catalyst: Influence of pretreatment gas atmospheres. Int. J. Hydrogen Energy 2012, 37, 10135–10144. [Google Scholar] [CrossRef]
- Hu, R.; Furukawa, T.; Wang, X.; Nagatsu, M. Tailoring amino-functionalized graphitic carbon-encapsulated gold core/shell nanostructures for the sensitive and selective detection of copper ions. Adv. Funct. Mater. 2017, 27, 1702232–1702242. [Google Scholar] [CrossRef]
- Fang, X.; Cheng, X.; Zhang, Y.; Zhang, L.G.; Keidar, M. Single-step synthesis of carbon encapsulated magnetic nanoparticles in arc plasma and potential biomedical applications. J. Colloid Interface Sci. 2018, 509, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Moon, M.W. Carbon-encapsulated metal nanoparticles deposited by plasma enhanced magnetron sputtering. Vacuum 2018, 150, 124–128. [Google Scholar] [CrossRef]
- Calderon, B.; Smith, F.; Aracil, I.; Fullana, A. Green synthesis of thin shell carbon-encapsulated iron nanoparticles via hydrothermal carbonization. ACS Sustain. Chem. Eng. 2018, 6, 7995–8002. [Google Scholar] [CrossRef]
- Luo, N.; Li, X.; Wang, X.; Yan, H.; Zhang, C.; Wang, H. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method. Carbon 2010, 48, 3858–3863. [Google Scholar] [CrossRef]
- Ağaoğulları, D.; Madsen, S.J.; Ögüt, B.; Koh, A.L.; Sinclair, R. Synthesis and characterization of graphite-encapsulated iron nanoparticles from ball milling-assisted low-pressure chemical vapor deposition. Carbon 2017, 124, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Jaumann, T.; Ibrahim, E.M.M.; Hampel, S.; Maier, D.; Leonhardt, A.; Büchner, B. The synthesis of superparamagnetic cobalt nanoparticles encapsulated in carbon through high-pressure CVD. Chem. Vap. Depos. 2013, 19, 228–234. [Google Scholar] [CrossRef]
- Wang, J.N.; Zhang, L.; Yu, F.; Sheng, Z.M. Synthesis of carbon encapsulated magnetic nanoparticles with giant coercivity by a spray pyrolysis approach. J. Phys. Chem. B 2007, 111, 2119–2124. [Google Scholar] [CrossRef] [PubMed]
- Bystrzejewski, M.; Klingeler, R.; Gemming, T.; Büchner, B.; Rümmeli, M.H. Synthesis of carbon-encapsulated iron nanoparticles by pyrolysis of iron citrate and poly(vinyl alcohol): A critical evaluation of yield and selectivity. Nanotechnology 2011, 22, 315606. [Google Scholar] [CrossRef] [PubMed]
- Eremin, A.V.; Gurentsov, E.V.; Musikhin, S.A. Temperature influence on the properties of carbon-encapsulated iron nanoparticles forming in pyrolysis of gaseous precursors. J. Alloys Compd. 2017, 727, 711–720. [Google Scholar] [CrossRef]
- Xu, X.; Gao, L.; Duan, G. The fabrication of Au@C core/shell nanoparticles by laser ablation in solutions and their enhancements to a gas sensor. Micromachines 2018, 9, 278. [Google Scholar] [CrossRef]
- Amendola, V.; Riello, P.; Meneghetti, M. Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents. J. Phys. Chem. C 2010, 115, 5140–5146. [Google Scholar] [CrossRef]
- Yu, Y.; Jung, H.J.; Je, M.; Choi, H.C.; Choi, M.Y. Enhanced dechlorination of m -DCB using iron@graphite/palladium (Fe@C/Pd) nanoparticles produced by pulsed laser ablation in liquid. Chemosphere 2016, 155, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Bajpai, R.; Koratkar, N.; Misra, D.S. Localized transformation of few-layered graphene producing graphitic shells with nanoparticle cores for catalytic applications. Carbon 2015, 85, 406–413. [Google Scholar] [CrossRef]
- Kim, Y.; Ma, R.; Reddy, D.A.; Kim, T.K. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core–shell nanospheres for catalytic reduction of nitrobenzene to aniline. Appl. Surf. Sci. 2015, 357, 2112–2120. [Google Scholar] [CrossRef]
- Zeng, H.B.; Du, X.W.; Singh, S.C.; Kulinich, S.A.; Yang, S.H.; He, J.; Cai, W.P. Nanomaterials via laser ablation/irradiation in liquid: A review. Adv. Funct. Mater. 2012, 22, 1333–1353. [Google Scholar] [CrossRef]
- García-Calzada, R.; Rodio, M.; Bagga, K.; Intartaglia, R.; Bianchini, P.; Chirvony, V.S.; Martínez-Pastor, J.P. Facile laser-assisted synthesis of inorganic nanoparticles covered by a carbon shell with tunable luminescence. RSC Adv. 2015, 5, 50604–50610. [Google Scholar] [CrossRef]
- Amendola, V.; Meneghetti, M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2013, 15, 3027–3046. [Google Scholar] [CrossRef] [PubMed]
- Mintcheva, N.; Aljulaih, A.A.; Wunderlich, W.; Kulinich, S.A.; Iwamori, S. Laser-ablated ZnO nanoparticles and their photocatalytic activity toward organic pollutants. Materials 2018, 11, 1127. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Sato, Y.; Konoshita, M.; Shankar, P.; Mintcheva, N.; Honda, M.; Iwamori, S.; Kulinich, S.A. Room temperature ethanol sensor based on ZnO prepared via laser ablation in water. Jpn. J. Appl. Phys. 2017, 56, 080304. [Google Scholar] [CrossRef]
- Niu, K.Y.; Zheng, H.; Li, Z.; Yang, J.; Sun, J.; Du, X.W. Laser dispersion of detonation nanodiamonds. Angew. Chem. Int. Ed. 2011, 50, 4099–4102. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.Y.; Yang, J.; Kulinich, S.A.; Sun, J.; Du, X.W. Hollow nanoparticles of metal oxides and sulfides: Fast preparation via laser ablation in liquid. Langmuir 2010, 26, 16652–16657. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.Y.; Yang, J.; Kulinich, S.A.; Sun, J.; Li, H.; Du, X.W. Morphology control of nanostructures via surface reaction of metal nanodroplets. J. Am. Chem. Soc. 2010, 132, 9814–9819. [Google Scholar] [CrossRef] [PubMed]
- Honda, M.; Goto, T.; Owashi, T.; Rozhin, A.G.; Yamaguchi, S.; Ito, T.; Kulinich, S.A. ZnO nanorods prepared via ablation of Zn with millisecond laser in liquid media. Phys. Chem. Chem. Phys. 2016, 18, 23628–23637. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Du, D.; Mourou, G. Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron. 1997, 33, 1706–1716. [Google Scholar] [CrossRef]
- Wang, D.; Wei, Z.; Jin, G.; Chen, L.; Liu, H. Experimental and theoretical investigation of millisecond-pulse laser ablation biased Si avalanche photodiodes. Int. J. Heat Mass Transf. 2018, 122, 391–394. [Google Scholar] [CrossRef]
- Gabriel, A.; Chatillon, C.; Ansara, I. Thermochemical and phase diagram analysis of the Ni-C, Co-C, and Co-Ni-C systems. High Temp. Sci. 1988, 25, 17–54. [Google Scholar]
- Wang, Z.; Dong, A.; Wei, M.; Fu, Q.; Bao, X. Graphene as a surfactant for metal growth on solid surfaces: Fe on graphene/SiC(0001). Appl. Phys. Lett. 2014, 104, 181604. [Google Scholar] [CrossRef]
- Wu, N.; Liu, X.; Zhao, C.; Cui, C.; Xia, A. Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J. Alloys Compd. 2016, 656, 628–634. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Shao, Y.-L.; Cui, L.; Kulinich, S.A.; Du, X.-W. Spheroidization of Nickel Powder and Coating with Carbon Layer through Laser Heating. Materials 2018, 11, 1641. https://doi.org/10.3390/ma11091641
Li S, Shao Y-L, Cui L, Kulinich SA, Du X-W. Spheroidization of Nickel Powder and Coating with Carbon Layer through Laser Heating. Materials. 2018; 11(9):1641. https://doi.org/10.3390/ma11091641
Chicago/Turabian StyleLi, Shuang, Yu-Ling Shao, Lan Cui, Sergei A. Kulinich, and Xi-Wen Du. 2018. "Spheroidization of Nickel Powder and Coating with Carbon Layer through Laser Heating" Materials 11, no. 9: 1641. https://doi.org/10.3390/ma11091641