Next Article in Journal
Demineralized Bone Matrix Coating Si-Ca-P Ceramic Does Not Improve the Osseointegration of the Scaffold
Previous Article in Journal
A Feasibility Study of Processing Polydimethylsiloxane–Sodium Carboxymethylcellulose Composites by a Low-Cost Fused Deposition Modeling 3D Printer
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Materials 2018, 11(9), 1579; https://doi.org/10.3390/ma11091579

A Study of the Effects of Al, Cr, Hf, and Ti Additions on the Microstructure and Oxidation of Nb-24Ti-18Si Silicide Based Alloys

Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
*
Author to whom correspondence should be addressed.
Received: 13 June 2018 / Revised: 9 August 2018 / Accepted: 22 August 2018 / Published: 1 September 2018
Full-Text   |   PDF [3786 KB, uploaded 1 September 2018]   |  

Abstract

In Nb-silicide based alloys Al, Cr, Hf, and Ti additions are crucial for achieving balance of properties. It is not known how the simultaneous addition of Hf with Al and Ti, or Hf with Al, Cr, and Ti affects macrosegregation, and how the alloying affects hardness, Young’s modulus and bulk alloy oxidation, and contamination of the solid solution Nbss and the Nb5Si3 compound by oxygen. Two alloys with nominal compositions (at.%) Nb-24Ti-18Si-5Al-5Hf (alloy NbSiTiHf-5Al) and Nb-24Ti-18Si-5Al-5Cr-5Hf (alloy NbSiTiHf-5Al-5Cr) were studied in the as-cast and heat-treated conditions and after isothermal oxidation at 800 and 1200 °C and were compared with similar alloys without Hf. In both alloys there was macrosegregation of Si and Ti, which was more severe in NbSiTiHf-5Al. Both alloys formed Nbss+βNb5Si3 eutectic. The Nbss was stable and its Al and Cr concentrations increased with increasing Ti concentration. In both conditions the βNb5Si3 was observed in the alloys NbSiTiHf-5Al and NbSiTiHf-5Al-5Cr, and the γNb5Si3 only in the alloy NbSiTiHf-5Al. In both heat-treated alloys, separate Hf-rich Nb5Si3 grains were formed. The Si and Al concentrations in Nb5Si3 respectively decreased and increased with increasing Ti concentration. Al and Cr had a stronger hardening effect in the Nbss than Al, Cr, and Hf. Al, Cr, and Ti had a stronger negative effect on the Young’s modulus of the Nbss compared with Al, Cr, Hf, and Ti. When Nb was substituted by Ti, Cr, and Hf, and Si by Al in the βNb5Si3, the Young’s modulus was reduced compared with the unalloyed silicide. At 800 °C both alloys did not exhibit catastrophic pest-oxidation after 100 h. The Nbss and Nb5Si3 were contaminated by oxygen in both alloys, the former more severely. At 1200 °C the scales spalled-off, more severely in the alloy NbSiTiHf-5Al, where substrate that was heavily contaminated by oxygen below the scale also spalled-off. In both alloys the contamination of Nb5Si3 and Nbss by oxygen was more severe compared with 800 °C, but the silicides were not contaminated by oxygen in their bulk. The Nbss was not contaminated by oxygen only in the bulk of the alloy NbSiTiHf-5Al-5Cr. View Full-Text
Keywords: Niobium alloys; intermetallics; solid solution; oxidation; hardness; Young’s modulus Niobium alloys; intermetallics; solid solution; oxidation; hardness; Young’s modulus
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Nelson, J.; Ghadyani, M.; Utton, C.; Tsakiropoulos, P. A Study of the Effects of Al, Cr, Hf, and Ti Additions on the Microstructure and Oxidation of Nb-24Ti-18Si Silicide Based Alloys. Materials 2018, 11, 1579.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top