

A Study of the Effects of Al, Cr, Hf, and Ti Additions on the Microstructure and Oxidation of Nb-24Ti-18Si Silicide Based Alloys

Jack Nelson, Mohammad Ghadyani, Claire Utton and Panos Tsakiropoulos *

Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; pha05jn@gmail.com (J.N.); m.ghadyani@sheffield.ac.uk (M.G.); c.utton@sheffield.ac.uk (C.U.)

* Correspondence: p.tsakiropoulos@sheffield.ac.uk

Examples of Hf containing Nb-silicide based alloys with transition, refractory, simple metal and metalloid additions (at.%)

 $\begin{aligned} \text{Nb-22.0Ti-16.0Si-7.0Cr-3.0Al-2.0Hf-3.0Ta-0.1Ho} &\rightarrow [1] \\ \text{Nb-22.0Ti-16.0Si-6.0Cr-3.0Al-4.0Hf-1.5B-0.06Y} &\rightarrow [2] \\ \text{Nb-19.9Ti-19.7Si-9.9Cr-3.3Al-4.2Hf-4.2Ge} &\rightarrow [3] \\ \text{Nb-(14-25.5)Ti-(12-20)Si-(10-13)Cr-2Al-(2-4)Hf-X} \text{ where X=B, Fe, Ge, Mo, Sn, Ta, W} &\rightarrow [4] \\ \text{Nb-(28.9-29.5)Ti-(7.7-8.4)Si-(10-10.4)Cr-(10-10.2)Al-(3-3.7)Hf-(3.4-4)Zr-(0-1.3)W-(0.9-1.3)Sn} &\rightarrow [5] \\ \text{Nb-(24.3-26.2)Ti-(11.9-17.6)Si-(2.5-6.7)Cr-(1.8-1.9)Al-(1.4-2)Hf-(0.2-5.5)Ge-(0.6-2.8)Fe-(0.3-1.6)Sn-} \end{aligned}$

(0.02-0.1)Ce-(0.2-2.3)B \rightarrow [6]

References

- 1. Tian, Y.X.; Chen, G.G.; Guo, J.T.; Zhou, L.Z.; He, L.L.; Ye, He.Q. Microstructure and mechanical properties of directionally solidified Nb-22Ti-16Si-7Cr-3Al-3Ta-2Hf-0.1Ho alloy. *Adv. Eng. Mater.* **2007**, *9*, 963–966.
- 2. Guo, H.S.; Guo, X.P. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb-Ti-Si based ultrahigh temperature alloy. *Scr. Mater.* **2011**, *64*, 637–640.
- 3. Menon, E.S.K.; Mendiratta, M.G.; Dimiduk, D.M. *Oxidation behaviour of complex niobium based alloys, in Niobium Science and Technology*; Niobium 2001 Ltd: Bridgeville, PA, USA, 2001; pp.121–145.
- 4. Jackson, M.R.; Bewlay, B.P.; Zhao, J.-C. Niobium-Silicide Based Composites Resistant to High Temperature Oxidation. U.S. Patent 6,913,655 B2, 5 July 2005.
- 5. Tewari, R.; Song, H.-J.; Vasudevan, V.K.; Chatterjee, A. Microstructural characterisation of multicomponent Nb-Ti-Si-Cr-Al-X alloys. *Metall. Mater. Trans.* **2006**, *37*, 2669–2682.
- 6. Menon, E.S.K.; Mendiratta, M.G.; Dimiduk, D.M. High temperature oxidation mechanisms in Nb-silicide bearing multicomponent alloys. *Struct. Intermetallics* 2001,591–600.

Area of interest	Phase	Nb	Si	Ti	Cr	Al	Hf	0
	Nb5Si3	39.1 ± 0.9	35.3 ± 1.2	17.2 ± 0.5	0.9 ± 0.1	2.8 ± 0.3	4.3 ± 0.1	0.4
		37.8–39.9	33.8–36.8	16.6–17.9	0.8-1.0	2.5–3.2	4.2-4.4	0–2.0
DZ*								
	Mixed	34.3 ± 1.2	0.8 ± 0.4	17.8 ± 0.6	4.6 ± 0.3	3.9 ± 0.3	2.8 ± 0.1	35.9 ± 1.7
	oxide	33.4–36.0	0.4–1.2	16.8–18.1	4.4-5.0	3.6-4.2	2.7–2.9	33.6–37.9
	NI	50.2 ± 3.5	1.7 ± 1.5	28.4 ± 1.5	8.1 ± 2.4	5.7 ± 0.2	4.4 ± 0.5	1.4
30 µm	Nbss	46.9–54.2	0.5–3.9	26.6–29.9	6.6–11.6	5.5–6.0	4.0-5.1	0–2.9
below								
DZ*	NIL al	40.7 ± 0.2	34.2	17.4	0.8	2.6 ± 0.1	4.3	0
	IND5S13	40.4-40.9	34.2–34.2	17.4–17.4	0.8–0.9	2.5–2.7	4.2-4.4	0
Bulk of	Nbss	50.6 ± 1.8	1.7 ± 1.3	29.0 ± 0.7	8.1 ± 2.5	6.2 ± 0.2	3.5 ± 0.4	0.8
		49.0-52.5	0.8–3.1	28.6–29.9	5.7-10.7	6.0–6.4	3.1–3.9	0–2.4
Duik of								
specimen	NTL .:	40.5	33.7	17.6	0.9	2.9 ± 0.1	4.3	0
	1ND5S13	40.4-40.5	33.6-33.8	17.6–17.6	0.9–1.0	2.9-3.0	4.3-4.4	U

Table S1. EPMA analysis data (at.%) for phases in the alloy NbSiTiHf-5Al-5Cr after isothermal oxidation at 800 °C.

*DZ = diffusion zone.

Table S2. EPMA analysis data (at.%) for phases in the alloy NbSiTiHf-5Al-5Cr after isothermal oxidation at 1200 °C.

	Element								
Phase	Nb	Si	Ti	Cr	Al	Hf	0		
Nb5Si3 in	40.3 ± 0.9	32.1 ± 1.9	18.6 ± 0.9	0.7 ± 0.3	3.1 ± 0.3	4.5 ± 0.1	0.7		
DZ*	38.5-41.8	29.5–34.2	17.8–19.8	0.3–1.2	2.4-3.5	4.3-4.7	0–2.2		
Hf rich Nb₅Si₃in DZ*	25.2 ± 2.4 22.2–28.2	29.3 ± 2.6 25.7–32.8	27.8 ± 1.4 26.2–29.4	2.0 ± 0.8 0.9–2.9	3.7 ± 0.4 3.2–4.2	11.9 ± 1.1 10.5–13.5	0.1		
Nbss in DZ*	45.3 ± 0.7 44.7-46.1	0.3	32.6 ± 0.5 32.1–33.1	10.5 ± 0.2 10.3–10.8	7.7 ± 0.1 7.5–7.7	0.2 0.2–0.3	3.3 ± 1.5 1.8–4.9		
HfO ₂	0.7 0.1–2.7	0	1.3 ± 0.9 0.5–2.7	0.3 0.2–0.6	0	37.7 ± 1.0 36.0–38.5	60.0 ± 1.9 56.7–61.3		
Ti oxide	3.9 ± 2.8 1.9–5.9	0	47.7 ± 1.5 46.6–48.8	0.2 0.1–0.3	0.3 0.2–0.4	0.1	47.8 ± 4.3 44.7–50.8		
Nbss in bulk of specimen	52.2 ± 0.1 52.1–52.3	0.3	29.5 29.5–29.4	9.2 9.2–9.3	6.9 6.8–6.9	1.9 1.9–1.9	0		

*DZ=Diffusion zone.

	Temperature of isothermal oxidation								
Alloy		800 °C		1200 °C					
	ΔW time	Pest scale	Kinetics	ΔW time	Scale	Kinetics			
YG1⁺	44 (18 h)	Yes Solid cube + powder	Linear	477 (26 h)	Maltese cross	Parabolic + linear			
YG2⁺	163 (18 h)	Yes Solid pieces + powder	Linear	187 (96 h)	Maltese cross	Parabolic + linear			
YG3⁺	52 (18 h)	Yes Solid cube + powder	Linear	31 (46 h)	Cube + scale spallation - all sides	Parabolic + linear			
KZ4+	84 (85 h)	Maltese cross**	Linear	139 (65 h)	Cube + scale spallation – all sides	Parabolic + linear			
KZ7+	20 (85 h)	No** Scale cracked along edges	Linear	101 (65 h)	Cube + scale spallation – all sides	Parabolic + linear			
KZ5⁺	30 (85 h)	No** Scale cracked along edges	Linear	64 (65 h)	Cube + scale spallation – all sides	Linear			
MG1+	11 (100 h)	No Scale cracked along edges	Parabolic	26 (100 h)	Cube + scale spallation - all sides	Parabolic + linear			
JN1⁺	5 (100 h)	No* Scale cracked along edges	Linear	50 (100 h)	Cube + scale partial spallation	Parabolic			

Table S3. Comparison of the isothermal oxidation of the alloys NbSiTiHf-5Al and NbSiTiHf-5Al-5Cr with other Nb silicide based alloys.

 ΔW = weight gain (mg/cm²).

* see text, ** see [3], + see text.

⁺YG1=Nb-18Si-5Hf-5Cr [26], YG2=Nb-18Si-5Hf-5Al [26], YG3=Nb-18Si-5Hf-24Ti [26], KZ4=Nb-24Ti-18Si-5Cr [25],

KZ7=Nb-24Ti-18Si-5Al [25], KZ5=Nb-24Ti-18Si-5Al-5Cr [25], MG1=NbSiTiHf-5Al, JN1=NbSiTiHf-5Al-5Cr.

Figure S1. X-ray diffractograms of the (a) as cast and (b) heat treated alloy NbSiTiHf-5Al and (c) cast and (d) heat treated alloy NbSiTiHf-5Al-5Cr. The non-indexed peaks correspond to un-identified phase(s).

Figure S2. Specimens of the alloys NbSiTiHf-5Al (a) and NbSiTiHf-5Al-5Cr (b) after 100 h isothermal oxidation at 800 °C.

Figure S3. Specimens of the alloys NbSiTiHf-5Al (a) and NbSiTiHf-5Al-5Cr (b) after 100 h isothermal oxidation at 1200 °C.

Figure S4. Isothermal oxidation data for the alloy NbSiTiHf-5Al (a) 800 °C, (b) 1200 °C.

Figure S5. Isothermal oxidation data for the alloy NbSiTiHf-5Al-5Cr (a) 800 °C, (b) 1200 °C.

Figure S6. BSE images of cross sections of the alloy NbSiTiHf-5Al after isothermal oxidation (a) at 800 °C and (b) at 1200 °C.

Figure S7. XRD data for the alloy NbSiTiHf-5Al (a) glancing angle data (GXRD, θ =5 degrees) for 800 °C, (b) powder XRD data from the spalled off scale at 1200 °C.

 \odot 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).