Heat-Resistant Ferroelectric-Polymer Nanocomposite with High Dielectric Constant
Abstract
:1. Introduction
2. Materials and Methods
- usage of poly(o-hydroxyamide) as the polymeric matrix, which is a film-forming material that at the same time ensures a high adhesion of formed films to various substrates;
- usage of PZT ceramics powder as a filler with the composition: Pb0.81Sr0.04Na0.075Bi0.075(Zr0.58Ti0.42)O3. PZT has a Curie temperature of 240 °C and the following dielectric properties at room temperature: dielectric constant is around 2200; loss tangent is 0.02;
- mixing of primary composite components at room temperature without pre-dispersion of filler particles;
- ultrasonic dispersion of the filler in composition of the polymer suspension that does not lead to degradation of the polymer but ensures the level of dispersion of 200–300 nm for the PZT ceramics powder;
- formation of composite coating on a substrate by sedimentation;
- removal of excess polymer from the surface of the deposited composite layer;
- heat treatment of the coating; as a result of consistent thermal treatment of the coating at 150 °C (30 min), 200 °C (30 min), 250 °C (30 min), 300 °C (30 min), 350 °C (30 min), a shrinkage of a layer thickness is not more than 30% and the degree of polyheterocyclisation reaches 98–99%.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lebedeva, G.K.; Bazhenova, A.S.; Rudaya, L.I.; Gofman, I.V.; Marfichev, A.Y.; Bol’shakov, M.N.; Sokolova, I.M.; Chigirev, D.S.; Ramsh, S.M.; Shamanin, V.V. Highly heat-resistant poly(o-hydroxy amide) binders of polyfunctional composites for microelectronics. Russ. J. Appl. Chem. 2016, 4, 1647–1654. [Google Scholar] [CrossRef]
- Singh, P.; Borkar, H.; Singh, B.P.; Singh, V.N.; Kumar, A. Ferroelectric polymer-ceramic composite thick films for energy storage applications. AIP Adv. 2014, 8, 087117. [Google Scholar] [CrossRef]
- Barber, P.; Balasubramanian, S.; Anguchamy, Y.; Gong, S.; Wibowo, A.; Gao, H.; Ploehn, H.J.; ZurLoye, H.C. Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage. Materials 2009, 2, 1697–1733. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T. Dielectric nanocomposites with insulating properties. IEEE T. Dielect. El. In. 2005, 12, 914–928. [Google Scholar] [CrossRef]
- Mukhopadhyay, S. Nanoscale Multifunctional Materials: Science & Applications; John Wiley and Sons: Dayton, OH, USA, 2011; ISBN 978-047050891-6. [Google Scholar]
- Allen, N.S. Photochemistry and Photophysics of Polymeric Materials; John Wiley & Sons: Dayton, OH, USA, 2010; ISBN 978-0-470-13796-3. [Google Scholar]
- Zhang, X.; Zhao, S.; Fang, W.; Ma, Y.; Wang, L.; Chen, D.; Zhao, C.; Yang, W. Improving dielectric properties of BaTiO3/poly (vinylidene fluoride) composites by employing core-shell structured BaTiO3@Poly(methylmethacrylate) and BaTiO3@Poly(trifluoroethyl methacrylate) nanoparticles. Appl. Surf. Sci. 2017, 403, 71–79. [Google Scholar] [CrossRef]
- Joseph, N.; Singh, S.K.; Sirugudu, R.K.; Murthy, V.R.K.; Ananthakumar, S.; Sebastian, M.T. Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Mater. Res. Bull. 2013, 48, 1681–1687. [Google Scholar] [CrossRef]
- Shin, S.-H.; Kim, Y.-H.; Jung, J.-Y.; Hyung Lee, M.; Nah, J. Solvent-assisted optimal BaTiO3 nanoparticles-polymer composite cluster formation for high performance piezoelectric nanogenerators. Nanotechnology 2014, 25, 485401. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Lv, F.; Zhang, Y.; Li, P.; Tong, W.; Ding, L.; Zhang, G. Enhanced dielectric performance of polyimide composites with modified sandwich-like SiO2@GO hybrids. Compos. Part A Appl. S. 2017, 99, 41–47. [Google Scholar] [CrossRef]
- Khan, M.N.; Jelania, N.; Li, C.; Khaliq, J. Flexible and low cost lead free composites with high dielectric constant. Ceram. Int. 2017, 43, 3923–3926. [Google Scholar] [CrossRef]
- Pan, C.; Kou, K.; Jia, Q.; Zhang, Y.; Wu, G.; Ji, T. Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Compos. Part B-Eng. 2017, 111, 83–89. [Google Scholar] [CrossRef]
- Singh, A.P.; Singh, Y.P. Dielectric behavior of CaCu3Ti4O12: Poly Vinyl Chloride ceramic polymer composites at different temperature and frequencies. Mod. Electron. Mater. 2017, 2, 121–126. [Google Scholar] [CrossRef]
- Rudaya, L.I.; Shamanin, V.V.; Lebedeva, G.K.; Sokolova, I.M.; Afanasjev, V.P.; Bol’shakov, M.N.; Marfichev, A.Y.; Chigirev, D.A. A Method for Producing a Nanocomposite Material for Heat- and Chemically Resistant Coatings and Planar Layers with High Dielectric Permittivity. RF Patent 2478663, 4 October 2013. [Google Scholar]
- Khaliq, J.; Deutz, D.B.; Frescas, J.F.A.S.; Vollenberg, P.; Hoeks, T.; van der Zwaag, S.; Groen, P. Effect of the piezoelectric ceramic filler dielectric constant on the piezoelectric properties of PZT-epoxy composites. Ceram. Int. 2017, 43, 2774–2779. [Google Scholar] [CrossRef]
- Wu, M.; Yuan, X.; Luo, H.; Chen, H.; Chen, C.; Zhou, K.; Zhang, D. Enhanced actuation performance of piezoelectric fiber composites induced by incorporated BaTiO3 nanoparticles in epoxy resin. Phys. Lett. A 2017, 381, 1641–1647. [Google Scholar] [CrossRef]
- Kim, D.S.; Baek, C.; Ma, H.J.; Kim, D.K. Enhanced dielectric permittivity of BaTiO3/epoxy resin composites by particle alignment. Ceram. Int. 2016, 42, 7141–7147. [Google Scholar] [CrossRef]
- Robertson, J.; Hall, D.A. Nonlinear dielectric properties of particulate barium titanate–polymer composites. J. Appl. Phys. 2008, 41, 23944–23951. [Google Scholar] [CrossRef]
- Tiwari, V.; Srivastava, G. Structural, dielectric and piezoelectric properties of 0–3 PZT/PVDF composites. Ceram. Int. 2015, l41, 8008–8013. [Google Scholar] [CrossRef]
- Fang, M.; Wang, Z.; Li, H.; Wen, Y. Fabrication and dielectric properties of Ba(Fe0.5Nb0.5)O3/poly (vinylidene fluoride) composites. Ceram. Int. 2015, 41, 387–392. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, M.; Li, H.; Wen, Y.; Wang, C.; Pu, Y. Enhanced dielectric properties in poly(vinylide). Compos. Sci. Technol. 2015, 117, 410–416. [Google Scholar] [CrossRef]
- Weadon, T.L.; Evans, T.H.; Sabolsky, E.M. Ceramic–polymer capacitive sensors for tactile/force awareness in harsh environment robotic applications. Smart Mater. Struct. 2013, 22, 12501–12507. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Wang, C.; Xiao, Y.; Pu, Y. Enhanced dielectric properties and energy discharge efficiency of dopamine modified (In0.05Nb0.05)Ti0.9O2 in poly(vinylidene-fluoride) composites. Mater. Lett. 2017, 198, 152–155. [Google Scholar] [CrossRef]
- Afanasjev, V.P.; Chigirev, D.A.; Mukhin, N.V.; Petrov, A.A. Formation and properties of PZT-PbO thin heterophase films. Ferroelectrics 2016, 496, 170–176. [Google Scholar] [CrossRef]
- Mukhin, N.V. Investigation the formation kinetics of grain boundary inclusions of lead oxide in lead zirconate-titonate films. Glass Phys. Chem. 2016, 42, 64–69. [Google Scholar] [CrossRef]
- Rudaya, L.I.; Lebedeva, G.K.; Bol’shakov, M.N.; Marfichev, Y.A.; Shamanin, V.V.; Nazarov, E.S.; Vertianov, D.V. Heat-Resistant Adhesives for Joining Crystals and Metals with a Polymeric base. RF patent 2534122, 27 November 2014. [Google Scholar]
- Zabello, A.G.; Kuzmov, M.V.; Lebedeva, G.K.; Bolshakov, M.N.; Shamanin, V.V. Capacitive Humidity Sensor of Gaseous Medium. RF patent 2602489, 20 November 2016. [Google Scholar]
- Brosseau, C. Modelling and simulation of dielectric heterostructures: A physical survey from an historical perspective. J. Appl. Phys. 2006, 39, 1277–1294. [Google Scholar] [CrossRef]
- Ying, K.-L.; Hsieh, T.-E. Sintering behaviors and dielectric properties of nanocrystalline barium titanate. Mat. Sci. Eng. B-Solid 2007, 138, 241–245. [Google Scholar] [CrossRef]
- Yoon, D.H.; Zhang, J.; Lee, B.I. Dielectric constant and mixing model of barium titanate composite thick films. Mater. Res. Bull. 2003, 38, 765–772. [Google Scholar] [CrossRef]
- Gefle, O.S.; Lebedev, S.M.; Pokholkov, Y.P. Complex Permittivity Frequency Spectra of Composite Dielectrics on the Basis of Polyvinylchloride; Bulletin of the Tomsk Polytechnic University: Tomsk, Russian, 2007; Volume 310, pp. 82–85. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhin, N.; Afanasjev, V.; Sokolova, I.; Chigirev, D.; Kastro, R.; Rudaja, L.; Lebedeva, G.; Oseev, A.; Tumarkin, A. Heat-Resistant Ferroelectric-Polymer Nanocomposite with High Dielectric Constant. Materials 2018, 11, 1439. https://doi.org/10.3390/ma11081439
Mukhin N, Afanasjev V, Sokolova I, Chigirev D, Kastro R, Rudaja L, Lebedeva G, Oseev A, Tumarkin A. Heat-Resistant Ferroelectric-Polymer Nanocomposite with High Dielectric Constant. Materials. 2018; 11(8):1439. https://doi.org/10.3390/ma11081439
Chicago/Turabian StyleMukhin, Nikolay, Valentin Afanasjev, Irina Sokolova, Dmitry Chigirev, Rene Kastro, Lyudmila Rudaja, Galina Lebedeva, Aleksandr Oseev, and Andrey Tumarkin. 2018. "Heat-Resistant Ferroelectric-Polymer Nanocomposite with High Dielectric Constant" Materials 11, no. 8: 1439. https://doi.org/10.3390/ma11081439