Thermodynamic Analysis of Ti3O5Nanoparticles Formed in Melt and Their Effects on Ferritic Steel Microstructure
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials and Methods
2.2. Thermodynamics Analysis
2.3. Tests
3. Results and Discussion
3.1. Ti and O Effects on Precipitation Behaviour of Ti3O5
3.2. Precipitation Behaviour of Ti3O5Nanoparticles in High-Strength Steel with Ti 0.05 wt %-O 0.002 wt %
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tang, H.; Chen, X.H.; Luo, X.; Chen, M.W.; Wang, Z.D.; Zuo, L.F. Heterogeneous nucleation effect of in situ nanoparticles on the metal-matrix microstructure. Mater. Lett. 2014, 137, 455–459. [Google Scholar] [CrossRef]
- Chen, X.H.; Qiu, L.L.; Tang, H.; Luo, X.; Zuo, L.F.; Wang, Z.D.; Wang, Y.L. Effect of nanoparticles formed in liquid melt on microstructure and mechanical property of high strength naval steel. J. Mater. Process. Tech. 2015, 222, 224–233. [Google Scholar] [CrossRef]
- Show, B.K.; Veerababu, R.; Balamuralikrishnan, R.; Malakondaiah, G. Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel. Mater. Sci. Eng. A 2010, 527, 1595–1604. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Morita, K. Influence of Alloying elements on the thermodynamic properties of titanium in molten steel. Metall. Trans. B 2007, 38, 671–680. [Google Scholar] [CrossRef]
- Cha, W.Y.; Miki, T.; Sasaki, Y.; Hino, M. Temperature dependence of Ti deoxidation equilibrium of liquid iron in coexistence with Ti3O5 and Ti2O3. ISIJ Int. 2008, 48, 729–738. [Google Scholar] [CrossRef]
- Cha, W.Y.; Miki, T.; Sasaki, Y.; Hino, M. Equilibrium between titanium and oxygen in liquid Fe-Ti alloy coexisted with titanium oxides at 1873 K. ISIJ Int. 2006, 46, 996–1005. [Google Scholar] [CrossRef]
- Pak, J.J.; Jo, J.O.; Kim, S.I.; Kim, W.Y. Thermodynamics of titanium and oxygen dissolved in liquid iron equilibrated with titanium oxides. ISIJ Int. 2007, 47, 16–24. [Google Scholar] [CrossRef]
- Jiang, S.H.; Wang, H.; Wu, Y.; Liu, X.J.; Chen, H.H.; Yao, M.J.; Gault, B.; Ponge, D.; Raabe, D.; Hirata, A.; et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 2017, 544, 460–464. [Google Scholar] [CrossRef] [PubMed]
- He, B.B.; Hu, B.; Yen, H.W.; Cheng, G.J.; Wang, Z.K.; Luo, H.W.; Huang, M.X. High dislocation density-induced large ductility in deformed and partitioned steeld. Science 2017, 357, 1029–1032. [Google Scholar] [CrossRef] [PubMed]
- Timokhina, I.; Miller, M.K.; Wang, J.T.; Beladi, H.; Cizek, P.; Hodgson, P.D. On the Ti-Mo-Fe-C atomic clustering during interphase precipitation in the Ti-Mo steel studied by advanced microscopic techniques. Mater. Des. 2016, 111, 222–229. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhou, M.; Pang, X.L.; Gao, K.W.; Alex, V. Applications and thermodynamic analysis of equilibrium solution for secondary phases in Ti-N-C gear steel system with nano-particles. Metals 2017, 7, 110–117. [Google Scholar] [CrossRef]
- Kapoor, M.; Isheim, D.; Vaynman, S.; Fine, M.E.; Chung, Y.W. Effects of increased alloying element content on NiAl-type precipitate formation, loading rate sensitivity, and ductility of Cu- and NiAl-precipitation-strengthened ferritic steels. Acta Mater. 2016, 104, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.L.; Zhuo, L.C.; Chen, M.W.; Wang, Z.D. Thermodynamic model for precipitation of carbonitrides in microalloyed steels and its application in Ti-V-C-N system. Rare Met. 2016, 35, 735–741. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhuo, L.C.; Chen, M.W.; Wang, Z.D. Precipitation behaviour of carbonitrides in Ti-Nb-C-N microalloyed steels and an engineering application with homogenously precipitated nano-particle. Mater. Sci. 2015, 21, 527–531. [Google Scholar] [CrossRef]
- Tang, H.; Chen, X.H.; Chen, M.W.; Zuo, L.F.; Hou, B.; Wang, Z.D. Microstructure and mechanical property of in-situ nano-particle strengthened ferritic steel by novel internal oxidation. Mater. Sci. Eng. A 2014, 609, 293–299. [Google Scholar] [CrossRef]
- The Japanese Society for the Promotion of Science, the 19th Committee on Steelmaking. Steelmaking Data Sourcebook, (Revised Edition); Gordon and Breach Science Publishers: New York, NY, USA, 1988; p. 45. [Google Scholar]
- Pak, J.J.; Yoo, J.T.; Jeong, Y.S.; Tae, S.J.; Seo, S.M.; Kim, D.S.; Lee, Y.D. Thermodynamics of titamium and nitrogen in Fe-Si melt. ISIJ Int. 2005, 45, 23–29. [Google Scholar] [CrossRef]
- Kishi, M.; Inoue, R.; Suito, H. Thermodynamics of oxygen and nitrogen in liquid Fe-20mass%Cr alloy equilibrated with titania-based slags. ISIJ Int. 1994, 34, 859–867. [Google Scholar] [CrossRef]
- Sigworth, G.K.; Elliott, J.F. The thermodynamics of liquid dilute iron alloys. Met. Sci. 1974, 8, 298–310. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, K.S.; Lee, K.J. Evaluation of wagner interaction parameter in Fe-Mn-Si-Nb-Ti-V-C system. Mater. Sci. Forum 2005, 475, 3327–3330. [Google Scholar] [CrossRef]
- Chen, J.X. Steelmaking Common Data Charts Manual; Metallurgical Industry Press: Beijing, China, 2010; pp. 511–520. [Google Scholar]
- Morita, Z.; Kunisada, K. Solubility of nitrogen and equilibrium of Ti-nitride forming reaction in liquid Fe-Ti alloys. ISIJ Int. 1977, 63, 1663–1671. [Google Scholar] [CrossRef]
- Wang, Z.D.; Wang, X.W.; Wang, Q.S.; Shih, I.; Xu, J.J. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy. Nanotechnology 2009, 20, 1–6. [Google Scholar]
- Chen, K.X.; Chen, X.H.; Ding, D.; Shi, G.D.; Wang, Z.D. Formation mechanism of in-situ nanostructured grain in cast Cu-10Sn-2Zn-1.5Fe-0.5Co (wt %) alloy. Mater. Des. 2016, 94, 338–344. [Google Scholar] [CrossRef]
- Tang, H.; Chen, X.H.; Niu, Y.W.; Luo, X.; Wang, Z.D.; Chen, M.W.; Shi, G.D. Thermal stability characteristics of in situ nano-particles formed in metal melt. Mater. Lett. 2016, 162, 261–264. [Google Scholar] [CrossRef]
C | Si | Mn | P ≤ 0.01 | S ≤ 0.002 | Cr | Mo | V | Nb | Ti | O | N |
---|---|---|---|---|---|---|---|---|---|---|---|
0.04 | 0.03 | 0.85 | 0.008 | 0.0016 | 0.45 | 0.5 | 0.03 | 0.06 | 0.05 | 0.002 | 0.0013 |
Element j | ||
---|---|---|
C | −221/T − 0.072 [16] | −0.42 [16] |
Si | 177.5/T − 0.12 [17] | −0.066 [16] |
Mn | −0.043 [16] | −0.021 [16] |
Cr | −0.016 [18] | −0.046 [18] |
S | −0.27[16] | −0.133 [19] |
P | — | — |
Ti | 212/T − 0.0640 [5] | −701/T + 0.0344 [5] |
V | 28.416/T + 0.0032 [20,21] | −2500/T + 1.01 [21] |
Nb | 15.74/T − 0.00314 [20,21] | −3440/T + 1.717 [21] |
Mo | — | — |
N | −19,500/T + 8.37 [22] | 0.057 [19] |
O | −2098/T + 0.0943 [6] | −1750/T + 0.760 [5] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhou, M.; Pang, X.; Chen, X.; Wang, Z.; Volinsky, A.A.; Tang, H. Thermodynamic Analysis of Ti3O5Nanoparticles Formed in Melt and Their Effects on Ferritic Steel Microstructure. Materials 2018, 11, 1343. https://doi.org/10.3390/ma11081343
Wang Y, Zhou M, Pang X, Chen X, Wang Z, Volinsky AA, Tang H. Thermodynamic Analysis of Ti3O5Nanoparticles Formed in Melt and Their Effects on Ferritic Steel Microstructure. Materials. 2018; 11(8):1343. https://doi.org/10.3390/ma11081343
Chicago/Turabian StyleWang, Yanlin, Meng Zhou, Xiaolu Pang, Xiaohua Chen, Zidong Wang, Alex A. Volinsky, and Hao Tang. 2018. "Thermodynamic Analysis of Ti3O5Nanoparticles Formed in Melt and Their Effects on Ferritic Steel Microstructure" Materials 11, no. 8: 1343. https://doi.org/10.3390/ma11081343
APA StyleWang, Y., Zhou, M., Pang, X., Chen, X., Wang, Z., Volinsky, A. A., & Tang, H. (2018). Thermodynamic Analysis of Ti3O5Nanoparticles Formed in Melt and Their Effects on Ferritic Steel Microstructure. Materials, 11(8), 1343. https://doi.org/10.3390/ma11081343