The Phase Evolution and Physical Properties of Binary Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Heinemann, M.; Eifert, B.; Heiliger, C. Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Phys. Rev. B 2013, 87, 115111. [Google Scholar] [CrossRef]
- Zoolfakar, A.S.; Rani, R.A.; Morfa, A.J.; O’Mullane, A.P.; Kalantarzadeh, K. Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. J. Mater. Chem. C 2014, 2, 5247–5270. [Google Scholar] [CrossRef]
- Musselman, K.P.; Marin, A.; Schmidt-Mende, L.; Macmanus-Driscoll, J.L. Incompatible length scales in nanostructured Cu2O solar cells. Adv. Funct. Mater. 2012, 22, 2202–2208. [Google Scholar] [CrossRef]
- Wang, Y.; Lany, S.; Ghanbaja, J.; Fagot-Revurat, Y.; Chen, Y.P.; Soldera, F.; Horwat, D.; Mucklich, F.; Pierson, J.F. Electronic structures of Cu2O, CuO, and Cu4O3: A joint experimental and theoretical study. Phys. Rev. B 2016, 94, 245418. [Google Scholar] [CrossRef]
- Ghijsen, J.; Tjeng, L.H.; Van, E.J.; Eskes, H.; Westerink, J.; Sawatzky, G.A.; Czyzyk, M.T. Electronic structure of Cu2O and CuO. Phys. Rev. B 1988, 38, 11322. [Google Scholar] [CrossRef]
- Liu, A.; Nie, S.; Liu, G.; Zhu, H.; Zhu, C.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. In situ one-step synthesis of p-type copper oxide for low-temperature, solution-processed thin-film transistors. J. Mater. Chem. C 2017, 5, 2524–2530. [Google Scholar] [CrossRef]
- Matsuzaki, K.; Nomura, K.; Yanagi, H.; Kamiya, T.; Hirano, M.; Hosono, H. Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor. Appl. Phys. Lett. 2008, 93, 202107. [Google Scholar] [CrossRef]
- Subramaniyan, A.; Perkins, J.D.; O’Hayre, R.P.; Lany, S.; Stevanovic, V.; Ginley, D.S.; Andriy, D.Z. Non-equilibrium deposition of phase pure Cu2O thin films at reduced growth temperature. Appl. Mater. 2014, 2, 022105. [Google Scholar] [CrossRef]
- Wang, Y.; Ghanbaja, J.; Soldera, F.; Migot, S.; Boulet, P.; Horwat, D.; Mücklich, F.; Pierson, J.F. Tuning the structure and preferred orientation in reactively sputtered copper oxide thin films. Appl. Surf. Sci. 2015, 335, 85–91. [Google Scholar] [CrossRef]
- Wang, Y.; Miska, P.; Pilloud, D.; Horwat, D.; Mucklich, F.; Pierson, J.F. Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing. J. Appl. Phys. 2014, 115, 073505. [Google Scholar] [CrossRef]
- Moharam, M.M.; Elsayed, E.M.; Nino, J.C.; Abou-Shahba, R.M.; Rashad, M.M. Potentiostatic deposition of Cu2O films as p-type transparent conductors at room temperature. Thin Solid Films 2016, 616, 760–766. [Google Scholar] [CrossRef]
- Dolai, S.; Das, S.; Hussain, S.; Bhar, R.; Pal, A.K. Cuprous oxide (Cu2O) thin films prepared by reactive d.c. sputtering technique. Vacuum 2017, 141, 296–306. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, H.; Wang, Y.; Che, H.; Gunawan, P.; Zhong, Z.; Hong, L.; Su, F. Facile solvothermal synthesis of phase-pure Cu4O3 microspheres and their lithium storage properties. Chem. Mater. 2012, 24, 1136–1142. [Google Scholar] [CrossRef]
- Pierson, J.F.; Thobor-Keck, A.; Billard, A. Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Appl. Surf. Sci. 2003, 210, 359–367. [Google Scholar] [CrossRef]
- Alajlani, Y.; Placido, F.; Barlow, A.; Chu, H.O.; Song, S.; Rahman, S.U.; Bold, R.D.; Gibson, D. Characterisation of Cu2O, Cu4O3, and CuO mixed phase thin films produced by microwave-activated reactive sputtering. Vacuum 2017, 144, 217–228. [Google Scholar] [CrossRef]
- Ekuma, C.E.; Anisimov, V.I.; Moreno, J.; Jarrell, M. Electronic structure and spectra of CuO. Eur. Phys. J. B 2014, 87, 23. [Google Scholar] [CrossRef]
- Tombak, A.; Benhaliliba, M.; Ocak, Y.S.; Kiliçoglu, T. The novel transparent sputtered p-type CuO thin films and Ag/p-CuO/n-Si schottky diode applications. Results Phys. 2015, 5, 314–321. [Google Scholar] [CrossRef]
- Akaltun, Y. Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction. Thin Solid Films 2015, 594, 30–34. [Google Scholar] [CrossRef]
- Rödl, C.; Sottile, F.; Reining, L. Quasiparticle excitations in the photo emission spectrum of CuO from first principles: A GW study. Phys. Rev. B 2015, 91, 045102. [Google Scholar] [CrossRef]
- Tripathi, T.S.; Terasaki, I.; Karppinen, M. Anomalous thickness-dependent optical energy gap of ALD-grown ultra-thin CuO films. J. Phys. Condens. Matter 2016, 28, 475801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.B.; Kishi, N.; Soga, T.; Jimbo, T.; Ahmed, M. Thin cuprous oxide films prepared by thermal oxidation of copper foils with water vapor. Thin Solid Films 2012, 520, 2679–2682. [Google Scholar] [CrossRef]
- Li, A.; Song, H.; Wan, W.; Zhou, J.; Chen, X. Copper oxide nanowire arrays synthesized by in-situ thermal oxidation as an anode material for lithium-ion batteries. Electrochim. Acta 2014, 132, 42–48. [Google Scholar] [CrossRef]
- Pattanasattayavong, P.; Thomas, S.; Adamopoulos, G.; Mclachlan, M.A.; Anthopoulos, T.D. P-channel thin-film transistors based on spray-coated Cu2O films. Appl. Phys. Lett. 2013, 102, 163505. [Google Scholar] [CrossRef] [Green Version]
- Kawwam, M.; Alharbi, F.; Aldwayyan, A.; Lebbou, K. Morphological study of PLD grown CuO films on SrTiO3, sapphire, quartz and MgO substrates. Appl. Surf. Sci. 2012, 258, 9949–9953. [Google Scholar] [CrossRef]
- Kawwam, M.; Alharbi, F.H.; Kayed, T.; Aldwayyan, A.; Alyamani, A.; Tabet, N.; Lebbou, K. Characterization of CuO(1 1 1)/MgO(1 0 0) films grown under two different PLD backgrounds. Appl. Surf. Sci. 2013, 276, 7–12. [Google Scholar] [CrossRef]
- Liau, C.K.; Jhan, J.L. Investigation of rapid thermal annealing on Cu2O properties and n-p Cu2O homojunction performance by electrochemical deposition processing. J. Electrochem. Soc. 2016, 163, D787–D793. [Google Scholar] [CrossRef]
- Debbichi, M.C.; Lucas, M.; Pierson, J.F.; Kruger, P. Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy. J. Phys. Chem. C 2012, 116, 10232–10237. [Google Scholar] [CrossRef]
- Gan, J.; Venkatachalapathy, V.; Svensson, B.G.; Monakhov, E.V. Influence of target power on properties of CuxO thin films prepared by reactive radio frequency magnetron sputtering. Thin Solid Films 2015, 594, 250–255. [Google Scholar] [CrossRef]
- Berthold, T.; Benstetter, G.; Frammelsberger, W.; Rodríguez, R.; Nafría, M. Nanoscale characterization of copper oxide films by Kelvin probe force microscopy. Thin Solid Films 2015, 584, 310–315. [Google Scholar] [CrossRef]
- Melitz, W.; Shen, J.; Kummel, A.C.; Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2012, 66, 1–27. [Google Scholar] [CrossRef]
- Casuso, I.; Fumagalli, L.; Samitier, J.; Padrós, E.; Reggiani, L.; Akimov, V.; Gomila, G. Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy. Nanotechnology 2007, 18, 465503. [Google Scholar] [CrossRef] [PubMed]
- Simmons, J.G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 1793–1803. [Google Scholar] [CrossRef]
- Tang, C.M.; Wang, Y.B.; Yao, R.H.; Ning, H.L.; Qiu, W.Q.; Liu, Z.W. Enhanced adhesion and field emission of CuO nanowires synthesized by simply modified thermal oxidation technique. Nanotechnology 2016, 27, 395605. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, L.; Zhang, H.T.; Zhong, K.H.; Zhao, G.Y.; Chen, G.L.; Lin, Y.B.; Chen, S.Y.; Huang, Z.G. Band gap manipulation and physical properties of preferred orientation CuO thin films with nano wheatear array. Ceram. Int. 2018, 44, 1134–1141. [Google Scholar] [CrossRef]
- Prabu, R.D.; Valanarasu, S.; Kulandaisamy, I.; Ganesh, V.; Shkir, M.; Kathalingam, A. Studies on copper oxide thin films prepared by simple nebulizer spray technique. J. Mater. Sci. Mater. Electron. 2017, 28, 6754–6762. [Google Scholar] [CrossRef]
- Murali, D.S.; Kumar, S.; Choudhary, R.J.; Wadikar, A.D.; Jain, M.K.; Subrahmanyam, A. Synthesis of Cu2O from CuO thin films: Optical and electrical properties. AIP Adv. 2015, 5, 047143. [Google Scholar] [CrossRef]
- Mahieu, S.; Depla, D. Correlation between electron and negative O−O− ion emission during reactive sputtering of oxides. Appl. Phys. Lett. 2007, 90, 121117. [Google Scholar] [CrossRef]
- Meyer, B.K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.P.; Klar, J.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M.; et al. Binary copper oxide semiconductors: From materials towards devices. Phys. Status Solidi B 2012, 249, 1487–1509. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.Q.; Zhao, X.M.; Bai, Y.; Qiao, L.J. Water adsorption behavior on metal surfaces and its influence on surface potential studied by in situ SPM. Appl. Surf. Sci. 2012, 258, 9087–9091. [Google Scholar] [CrossRef]
- Rodriguez, B.J.; Yang, W.C.; Nemanich, R.J.; Gruverman, A. Scanning probe investigation of surface charge and surface potential of GaN-based heterostructures. Appl. Phys. Lett. 2005, 86, 3522–3526. [Google Scholar] [CrossRef]
- Gaman, V.I. Influence of oxygen adsorption on the surface potential of a metal oxide semiconductor. Russ. Phys. J. 2012, 54, 1137–1144. [Google Scholar] [CrossRef]
Cu2O | Cu4O3 | CuO | |||
---|---|---|---|---|---|
2θ (°) | (h k l) | 2θ (°) | (h k l) | 2θ (°) | (h k l) |
36.5 | 1 1 1 | 30.7/31.1 | 2 0 0/1 0 3 | 35.5/35.7 | 0 0 2/ |
42.4 | 2 0 0 | 35.6/35.7/36.3 | 2 0 2/0 0 4/2 2 0 | 38.9/39.1 | 1 1 1/2 0 0 |
61.5 | 2 2 1 | 63.9/65.0 | 4 0 0/2 0 6 | 65.6 | 0 0 2 |
73.6 | 3 1 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, W.; Chen, Y.; Peng, X.; Zhong, K.; Lin, Y.; Huang, Z. The Phase Evolution and Physical Properties of Binary Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering. Materials 2018, 11, 1253. https://doi.org/10.3390/ma11071253
Zheng W, Chen Y, Peng X, Zhong K, Lin Y, Huang Z. The Phase Evolution and Physical Properties of Binary Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering. Materials. 2018; 11(7):1253. https://doi.org/10.3390/ma11071253
Chicago/Turabian StyleZheng, Weifeng, Yue Chen, Xihong Peng, Kehua Zhong, Yingbin Lin, and Zhigao Huang. 2018. "The Phase Evolution and Physical Properties of Binary Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering" Materials 11, no. 7: 1253. https://doi.org/10.3390/ma11071253
APA StyleZheng, W., Chen, Y., Peng, X., Zhong, K., Lin, Y., & Huang, Z. (2018). The Phase Evolution and Physical Properties of Binary Copper Oxide Thin Films Prepared by Reactive Magnetron Sputtering. Materials, 11(7), 1253. https://doi.org/10.3390/ma11071253