Investigation of Electrochemical, Optical and Thermal Effects during Flash Sintering of 8YSZ
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
- The observed blackening phenomenon develops from the cathode and moves to the anodic region, consistent with the well-known electrochemical blackening associated with the partial reduction of zirconia. It should also be mentioned that the more intense black colour in the centre of the specimens’ cross-section (Figure 8b) is consistent with a partial reduction: as a matter of fact, the surface was more easily re-oxidized since it was in contact with O2 and thus lost some of its dark colouration.
- A partial reduction (blackening) is also observed during FS experiments when they are carried out in air. Therefore, it can be observed that during the process YSZ always enters into an electrochemical reduction regime. This is a general consideration, which is true although no evident blackening is observed on the samples cooled down to room temperature: the ceramic after the flash process is quickly re-oxidised and hence loses the black colour, as observed in Figure 2.
- The blackening process does not involve only small regions close to the cathode, but extends to wider portions in the ceramic sample.
- The blackening process only takes a few seconds to develop and does not just take place during stage II or III. Therefore the material chemistry is modified by the field and current application even during the FS incubation. In other words, it is insufficient to explain the overall sample evolution upon DC-flash sintering, that is, the densification and electrical resistivity drop, without considering this phenomenon.
- The partial reduction is also evident when using AC with frequencies of 0.1 to 1 Hz, although it becomes negligible when f ≥ 10 Hz (see Figure 6 and the “Supplementary Material”).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cologna, M.; Rashkova, B.; Raj, R. Flash sintering of nanograin zirconia in <5 s 850 °C. J. Am. Ceram. Soc. 2010, 93, 3556–3559. [Google Scholar] [CrossRef]
- Downs, J.A.; Sglavo, V.M. Electric field assisted sintering of cubic zirconia at 390 °C. J. Am. Ceram. Soc. 2013, 96, 1342–1344. [Google Scholar] [CrossRef]
- Hao, X.; Liu, Y.; Wang, Z.; Qiao, J.; Sun, K. A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current. J. Power Sources 2012, 210, 86–91. [Google Scholar] [CrossRef]
- Muccillo, R.; Muccillo, E.N.S. Electric field-assisted flash sintering of tin dioxide. J. Eur. Ceram. Soc. 2014, 34, 915–923. [Google Scholar] [CrossRef]
- Zapata-Solvas, E.; Bonilla, S.; Wilshaw, P.R.; Todd, R.I. Preliminary investigation of flash sintering of SiC. J. Eur. Ceram. Soc. 2013, 33, 2811–2816. [Google Scholar] [CrossRef]
- Jha, S.K.; Raj, R. The effect of electric field on sintering and electrical conductivity of Titania. J. Am. Ceram. Soc. 2014, 97, 527–534. [Google Scholar] [CrossRef]
- Cologna, M.; Francis, J.S.C.; Raj, R. Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J. Eur. Ceram. Soc. 2011, 31, 2827–2837. [Google Scholar] [CrossRef]
- Biesuz, M.; Sglavo, V.M. Liquid phase flash sintering in magnesia silicate glass-containing alumina. J. Eur. Ceram. Soc. 2017, 37, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Biesuz, M.; Abate, W.D.; Sglavo, V.M. Porcelain stoneware consolidation by flash sintering. J. Am. Ceram. Soc. 2018, 101, 71–81. [Google Scholar] [CrossRef]
- Prado, M.O.; Biesuz, M.; Frasnelli, M.; Benedetto, F.E.; Sglavo, V.M. Viscous flow flash sintering of porous silica glass. J. Non-Cryst. Solids 2017, 476, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Frasnelli, M.; Sglavo, V.M. Flash sintering of tricalcium phosphate (TCP) bioceramics. J. Eur. Ceram. Soc. 2018, 38, 279–285. [Google Scholar] [CrossRef]
- Yu, M.; Grasso, S.; Mckinnon, R.; Saunders, T.; Reece, M.J. Review of flash sintering: materials, mechanisms and modelling. Adv. Appl. Ceram. 2017, 116, 24–60. [Google Scholar] [CrossRef]
- Dancer, C.E.J. Flash sintering of ceramic materials. Mater. Res. Express 2016, 3, 102001. [Google Scholar] [CrossRef] [Green Version]
- Grasso, S.; Saunders, T.; Porwal, H.; Milsom, B.; Tudball, A.; Reece, M.; Chen, I.W. Flash Spark Plasma Sintering (FSPS) of alfa and beta-SiC. J. Am. Ceram. Soc. 2016, 99, 1534–1543. [Google Scholar] [CrossRef]
- Prette, A.L.G.; Cologna, M.; Sglavo, V.; Raj, R. Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. J. Power Sources 2011, 196, 2061–2065. [Google Scholar] [CrossRef]
- Grasso, S.; Saunders, T.; Porwal, H.; Cedillos-Barraza, O.; Jayaseelan, D.D.; Lee, W.E.; Reece, M.J. Flash spark plasma sintering (FSPS) of pure ZrB2. J. Am. Ceram. Soc. 2014, 97, 2405–2408. [Google Scholar] [CrossRef]
- Spiridigliozzi, L.; Biesuz, M.; Dell’Agli, G.; Di Bartolomeo, E.; Zurlo, F.; Sglavo, V.M. Microstructural and electrical investigation of flash-sintered Gd/Sm-doped ceria. J. Mater. Sci. 2017, 52, 7479–7488. [Google Scholar] [CrossRef]
- Lebrun, J.M.; Raj, R. A first report of photoemission in experiments related to flash sintering. J. Am. Ceram. Soc. 2014, 97, 2427–2430. [Google Scholar] [CrossRef]
- Biesuz, M.; Luchi, P.; Quaranta, A.; Martucci, A.; Sglavo, V.M. Photoemission during flash sintering: An interpretation based on thermal radiation. J. Eur. Ceram. Soc. 2017, 37, 3125–3130. [Google Scholar] [CrossRef] [Green Version]
- Biesuz, M.; Luchi, P.; Quaranta, A.; Sglavo, V.M. Theoretical and phenomenological analogies between flash sintering and dielectric breakdown in α-alumina. J. Appl. Phys. 2016, 120, 145107. [Google Scholar] [CrossRef]
- Grasso, S.; Sakka, Y.; Rrendtorff, N.; Hu, C.; Maizza, G.; Borodianska, H.; Vasylkiv, O. Modeling of the temperature distribution of flash sintered zirconia. J. Ceram. Soc. Jpn. 2011, 119, 144–146. [Google Scholar] [CrossRef] [Green Version]
- Todd, R.I.; Zapata-Solvas, E.; Bonilla, R.S.; Sneddon, T.; Wilshaw, P.R. Electrical characteristics of flash sintering: Thermal runaway of Joule heating. J. Eur. Ceram. Soc. 2015, 35, 1865–1877. [Google Scholar] [CrossRef]
- Zhang, Y.; Jung, J.I.; Luo, J. Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO-Bi2O3 under direct currents. Acta Mater. 2015, 94, 87–100. [Google Scholar] [CrossRef]
- Da Silva, J.G.P.; Al-Qureshi, H.A.; Keil, F.; Janssen, R. A dynamic bifurcation criterion for thermal runaway during the flash sintering of ceramics. J. Eur. Ceram. Soc. 2016, 36, 1261–1267. [Google Scholar] [CrossRef]
- Ji, W.; Parker, B.; Falco, S.; Zhang, J.Y.; Fu, Z.Y.; Todd, R.I. Ultra-fast firing: Effect of heating rate on sintering of 3YSZ, with and without an electric field. J. Eur. Ceram. Soc. 2017, 37, 2547–2551. [Google Scholar] [CrossRef]
- Du, Y.; Stevenson, A.J.; Vernat, D.; Diaz, M.; Marinha, D. Estimating Joule heating and ionic conductivity during flash sintering of 8YSZ. J. Eur. Ceram. Soc. 2016, 36, 749–759. [Google Scholar] [CrossRef]
- Raj, R. Joule heating during flash-sintering. J. Eur. Ceram. Soc. 2012, 32, 2293–2301. [Google Scholar] [CrossRef]
- Narayan, J. A new mechanism for field-assisted processing and flash sintering of materials. Scr. Mater. 2013, 69, 107–111. [Google Scholar] [CrossRef]
- Niu, B.; Zhang, F.; Zhang, J.; Ji, W.; Wang, W.; Fu, Z. Ultra-fast densification of boron carbide by flash spark plasma sintering. Scr. Mater. 2016, 116, 127–130. [Google Scholar] [CrossRef]
- Chaim, R. Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials 2016, 9, 280. [Google Scholar] [CrossRef] [PubMed]
- Chaim, R.; Chevallier, G.; Weibel, A.; Estournès, C. Flash sintering of dielectric nanoparticles as a percolation phenomenon through a softened film. J. Appl. Phys. 2017, 121, 145103. [Google Scholar] [CrossRef]
- Naik, K.S.; Sglavo, V.M.; Raj, R. Flash sintering as a nucleation phenomenon and a model thereof. J. Eur. Ceram. Soc. 2014, 34, 4063–4067. [Google Scholar] [CrossRef]
- Janek, J.; Korte, C. Electrochemical blackening of yttria-stabilized zirconia a morphological instability of the moving reaction front. Solid State Ion. 1999, 116, 181–195. [Google Scholar] [CrossRef]
- Downs, J.A. Mechanisms of Flash Sintering in Cubic Zirconia; University of Trento: Trento, Italy, 2013. [Google Scholar]
- Kim, S.W.; Kim, S.G.; Jung, J.I.; Kang, S.J.L.; Chen, I.W. Enhanced grain boundary mobility in yttria-stabilized cubic zirconia under an electric current. J. Am. Ceram. Soc. 2011, 94, 4231–4238. [Google Scholar] [CrossRef]
- Qin, W.; Majidi, H.; Yun, J.; van Benthem, K. Electrode Effects on Microstructure Formation During Flash Sintering of Yttrium-Stabilized Zirconia. J. Am. Ceram. Soc. 2016, 99, 2253–2259. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, H.; Chen, I. Electrical and Hydrogen Reduction Enhances Kinetics in Doped Zirconia and Ceria: I. Grain Growth Study. J. Am. Ceram. Soc. 2017, 100, 876–886. [Google Scholar] [CrossRef]
- Saunders, T.; Grasso, S.; Reece, M.J. Plasma formation during electric discharge (50 V) through conductive powder compacts. J. Eur. Ceram. Soc. 2014, 35, 871–877. [Google Scholar] [CrossRef]
- Bonola, C.; Camagni, P.; Chiodelli, P.; Samoggia, G. Study of defects introduced by electroreduction in YSZ. Radiat. Effects Defects Solids 1991, 119–121, 457–462. [Google Scholar] [CrossRef]
- Thorp, J.S.; Buckley, H.P. The dielectric constants of current- blackened single crystral yttria-stabilized zirconia. J. Mater. Sci. 1973, 8, 1401–1408. [Google Scholar] [CrossRef]
- Moghadam, F.K.; Yamashita, T.; Stevenson, D.A. Characterization of the current-blackening phenomena in scandia stabilized zirconia using transmission electron microscopy. J. Mater. Sci. 1983, 18, 2255–2259. [Google Scholar] [CrossRef]
- Casselton, R.E.W. Blackening in yttria stabilized zirconia due to cathodic processes at solid platinum electrodes. J. Appl. Electrochem. 1974, 4, 25–48. [Google Scholar] [CrossRef]
- Sinhamahapatra, A.; Jeon, J.P.; Kang, J.; Han, B.; Yu, J.S. Oxygen-Deficient Zirconia (ZrO2−x): A New Material for Solar Light Absorption. Sci. Rep. 2016, 6, 27218. [Google Scholar] [CrossRef] [PubMed]
- Gionco, C.; Paganini, M.C.; Giamello, E.; Burgess, R.; Di Valentin, C.; Pacchioni, G. Paramagnetic defects in polycrystalline zirconia: An EPR and DFT study. Chem. Mater. 2013, 25, 2243–2253. [Google Scholar] [CrossRef]
- Heiroth, S.; Ghisleni, R.; Lippert, T.; Michler, J.; Wokaun, A. Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition. Acta Mater. 2011, 59, 2330–2340. [Google Scholar] [CrossRef]
- Caspers, C.; Gloskovskii, A.; Drube, W.; Schneider, C.M.; Müller, M. “Conductive” Yttria-Stabilized Zirconia As an Epitaxial Template for Oxide Heterostructures. J. Appl. Phys. 2014, 115, 11–14. [Google Scholar] [CrossRef]
- Liu, G.; Liu, D.; Liu, J.; Gao, Y.; Wang, Y. Asymmetric temperature distribution during steady stage of flash sintering dense zirconia. J. Eur. Ceram. Soc. 2018, 7, 2893–2896. [Google Scholar] [CrossRef]
- Chiang, Y.-M.; Birnie, D.; Kingery, P.W.D. Physical Ceramics: Principles for Ceramic Science and Engineering; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Park, J.-H.; Blumenthal, R.N. Electronic Transport in 8 Mole Percent Y2O3-ZrO2. J. Electrochem. Soc. 1989, 136, 2867–2876. [Google Scholar] [CrossRef]
Field | Contact Type | Atmosphere | Blackening | (Tanode − Tcathode)max (°C) | Conductivity Asymmetry |
---|---|---|---|---|---|
DC | BAD | AIR | YES a,b,c | 110 ÷ 240 a,b,c | YES c |
Ar | YES a,b,c | NOT MEASURED | NOT MEASURED | ||
GOOD | AIR | POOR a,b,c | ≈ 0 a,b,c | POOR c | |
Ar | YES c | 205 c | NOT MEASURED | ||
AC: 0.1 Hz | BAD | AIR | YES a,b,c | 100 ÷ 230 a,b,c | NOT MEASURED |
GOOD | POOR a,b,c | ≈ 0 a,b,c | NOT MEASURED | ||
AC: 1 Hz | BAD | AIR | YES a,b,c | NOT MEASURED | NOT MEASURED |
GOOD | POOR a,b,c | NOT MEASURED | NOT MEASURED | ||
AC: 10 Hz | BAD | AIR | POOR a,b,c | ≈ 0 a,b,c | NOT MEASURED |
GOOD | POOR a,b,c | ≈ 0 a,b,c | NOT MEASURED |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biesuz, M.; Pinter, L.; Saunders, T.; Reece, M.; Binner, J.; Sglavo, V.M.; Grasso, S. Investigation of Electrochemical, Optical and Thermal Effects during Flash Sintering of 8YSZ. Materials 2018, 11, 1214. https://doi.org/10.3390/ma11071214
Biesuz M, Pinter L, Saunders T, Reece M, Binner J, Sglavo VM, Grasso S. Investigation of Electrochemical, Optical and Thermal Effects during Flash Sintering of 8YSZ. Materials. 2018; 11(7):1214. https://doi.org/10.3390/ma11071214
Chicago/Turabian StyleBiesuz, Mattia, Lorenzo Pinter, Theo Saunders, Mike Reece, Jon Binner, Vincenzo M. Sglavo, and Salvatore Grasso. 2018. "Investigation of Electrochemical, Optical and Thermal Effects during Flash Sintering of 8YSZ" Materials 11, no. 7: 1214. https://doi.org/10.3390/ma11071214