Study on the Synergetic Fire-Retardant Effect of Nano-Sb2O3 in PBT Matrix
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Nanocomposites
2.3. Characterization
3. Result and Discussion
3.1. Crystallization and Melting Behavior
3.2. Mechanical Properties
3.3. Thermal Decomposition Behaviors
3.4. Fire Behaviour: Forced Flaming Combustion (Conecalorimeter)
3.5. Flammability
3.6. Discussion of the Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, L.; Chen, H.; Jia, S.; Lu, X.; Huang, J. Influences of ethylene-butylacrylate-glycidyl methacrylate on morphology and mechanical properties of poly(butylene erephthalate)/polyolefin elastomer blends. J. Appl. Polym. Sci. 2014, 131, 1107–1117. [Google Scholar] [CrossRef]
- Zhang, D.H.; He, M.; He, W.D.; Zhou, Y.Q.; Shu, H.; Yu, J. Influence of thermo-oxidative ageing on the thermal and dynamical mechanical properties of long glass fibre-reinforced poly(butylene terephthalate) composites filled with DOPO. Materials 2017, 10, 500. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.L.; Hu, Y.; Chen, X.F.; Shi, Y.Q.; Niu, Y.; Zhang, Y.; He, S.; Dai, H.M. Dual modification of graphene by polymeric flame retardant and Ni(OH)2 nanosheets for improving flame retardancy of polypropylene. Compos. Part A 2017, 100, 106–117. [Google Scholar] [CrossRef]
- Qiu, S.L.; Wang, X.; Yu, B.; Feng, X.M.; Mu, X.W.; Richard, K.K.; Hu, Y. Flame-retardant-wrapped polyphosphazene nanotubes: A novelstrategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins. J. Hazard. Mater. 2017, 325, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Niroumand, J.S.; Peighambardoust, S.J.; Shenavar, A. Polystyrene-based composites and nanocomposites with reduced brominated-flame retardant. Iran. Polym. J. 2016, 25, 607–614. [Google Scholar] [CrossRef]
- Samyn, F.; Bourbigo, S.; Jama, C.; Bellayer, S.; Nazare, S.; Hull, R.; Fina, A.; Castrovinci, A.; Camino, G. haracterisation of the dispersion in polymer flame retarded nanocomposites. Eur. Polym. J. 2008, 44, 1631–1641. [Google Scholar] [CrossRef]
- Bakirtzis, D.; Ramani, A.; Delichatsios, M.A.; Zhang, J. Structure of the condensed phase and char of fire-retarded PBT nanocomposites by TGA/ATR in N2. Fire Saf. J. 2009, 44, 1023–1029. [Google Scholar] [CrossRef]
- Matzen, M.; Kandola, B.; Huth, C.; Schartel, B. Influence of Flame Retardants on the Melt Dripping Behaviour of Thermoplastic Polymers. Materials 2015, 8, 5621–5646. [Google Scholar] [CrossRef] [PubMed]
- Grause, G.; Ishibashi, J.; Kameda, T.; Bhaskar, T.; Yoshioka, T. Kinetic studies of the decomposition of flame retardant containing high-impact polystyrene. Polym. Degrad. Stab. 2010, 95, 1129–1137. [Google Scholar] [CrossRef]
- Yang, W.; Kan, Y.C.; Song, L.; Richard, K. Effect of organo-modified montmorillonite on flame retardant poly(1,4-butyleneterephthalate) composites. Polym. Adv. Technol. 2011, 22, 2564–2570. [Google Scholar] [CrossRef]
- Gallo, E.; Braun, U.; Schartel, B.; Russo, P.; Aciernoa, D. Halogen-free flame retardedpoly(butylenes terephthalate) (PBT) using metal oxides/PBT nanocompositesin combination with aluminium phosphinate. Polym. Degrad. Stab. 2009, 94, 1245–1253. [Google Scholar] [CrossRef]
- Zhu, S.E.; Wang, L.L.; Chen, H.; Yang, W.; Yue, A.C.; Chen, T.B.; Luo, C.; Bin, W.M. Comparative Studies on Thermal, Mechanical, and Flame Retardant Properties of PBT Nanocomposites via Different Oxidation State Phosphorus-Containing Agents Modified Amino-CNTs. Nanomaterials 2018, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.L.; Zhou, S.G.; Niu, L.; Wen, C. Effect of Sb2O3 Modified by Various Surface Active Agents on Flame Retardant Properties of PVC Composite. J. Mater. Eng. 2016, 44, 64–69. [Google Scholar] [CrossRef]
- Xu, C.H.; Shi, S.Q.; Surya, C.; Woo, C.H. Synthesis of antimony oxide nano-particles by vapor transport and condensation. J. Mater. Sci. 2007, 42, 9855–9858. [Google Scholar] [CrossRef]
- Xu, J.L.; Zhang, L.; Guo, Q.; Feng, C. Research on the preparation of antimony nanoparticles by mechanical ball milling. Key Eng. Mater. 2014, 609, 244–249. [Google Scholar] [CrossRef]
- Yang, W.H.; Xu, J.L.; Niu, L.; Kang, C.H.; Ma, B.X. Analysis of agglomeration and interfacial properties in PBT/nano-Sb2O3 composites. J. Adhes. Sci. Technol. 2017, 32, 739–752. [Google Scholar] [CrossRef]
- Si, M.M.; Feng, J.; Hao, J.W.; Xu, L.S.; Du, J.X. Synergistic flame retardant effects and mechanisms of nano-Sb2O3 in combination with aluminum phosphinate in poly(ethylene terephthalate). Polym. Degrad. Stab. 2014, 100, 70–78. [Google Scholar] [CrossRef]
- Huang, G.B.; Song, P.A.; Liu, L.N. Fabrication of multifunctional graphene decorated with bromine and nano-Sb2O3 towards high-performance polymer nanocomposites. Carbon 2016, 98, 689–701. [Google Scholar] [CrossRef]
- Mirdamadian, Z.; Ghanbari, D. Synergistic Effect between Sb2O3 Nanoparticles–Trichloromelamine and Carbon Nanotube on the Flame Retardancy and Thermal Stability of the Cellulose Acetate. J. Clust. Sci. 2014, 25, 925–936. [Google Scholar] [CrossRef]
- Yang, W.H.; Xu, J.L.; Niu, L.; Kang, C.H.; Ma, B.X. Effects of high energy ball milling on mechanicaland interfacial properties of PBT/nano-Sb2O3 composites. J. Adhes. Sci. Technol. 2018, 32, 291–301. [Google Scholar] [CrossRef]
- Plastics-Determination of Burning Behaviour by Oxygen Index-Part 2: Ambient-Temperature Test; GB/T 2406.2-2009; Standardization Administration of the People’s Republic of China: Beijing, China, 2009.
- Reaction-to-Fire Test-Heat Release, Smoke Production and Mass Loss Rate; BS ISO 5660 standard; BSI Standards Publication: London, UK, 2015.
- Chen, S.J.; Jin, J.; Zhang, J. Non-isothermal crystallization behaviors of poly(4-methyl-pentene-1). J. Therm. Anal. Calorim. 2011, 103, 229–236. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, H.; Yang, B.H.; Lu, H.D.; Song, L.; Hu, Y. Facile preparation of modified carbon nanotube-reinforced PBT nanocomposites with enhanced thermal, flame retardancy, and mechanical properties. Polym. Compos. 2016, 37, 1812–1820. [Google Scholar] [CrossRef]
- Huang, T.; Li, J.L.; Yang, J.H.; Zhang, N.; Wang, Y.; Zhou, Z.W. Carbon nanotubes induced microstructure and property changes ofpolycarbonate/poly(butylene terephthalate) blend. Compos. Part B 2018, 133, 177–184. [Google Scholar] [CrossRef]
- Yin, H.J.; Dittrich, B.; Farooq, M.; Schartel, B. Carbon-based nanofillers/Poly(butylene terephthalate): Thermal, dielectric, electrical and rheological properties. J. Polym. Res. 2015, 22, 140. [Google Scholar] [CrossRef]
- Righetti, M.C.; Di Lorenzo, M.L. Melting process of poly (butylene terephthalate) analyzed by temperature-modulated differential scanning calorimetry. J. Polym. Sci. Part B 2004, 42, 2191–2201. [Google Scholar] [CrossRef]
- Wu, D.F.; Wu, L.C.; Yu, G.C.; Xu, B.; Zhang, M. Crystallization and thermal behavior of multiwalled carbon nanotube/poly(butylenes terephthalate) composites. Polym. Eng. Sci. 2008, 48, 1057–1067. [Google Scholar] [CrossRef]
- Deshmukh, G.S.; Peshwe, D.R.; Pathak, S.U.; Ekhe, J. A study on effect of mineral additions on the mechanical, thermal, and structural properties of poly(butylene terephthalate) (PBT) composites. J. Polym. Res. 2011, 18, 1081–1090. [Google Scholar] [CrossRef]
- Abe, H. Thermal Degradation of Environmentally Degradable Poly(hydroxyalkanoic acid)s. Macromol. Biosci. 2006, 6, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.D.; Wilkie, C. Fire performance of flame retardant polypropylene and polystyrene composites screened with microscale combustion calorimetry. Polym. Adv. Technol. 2011, 22, 14–21. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Q.G.; Zhou, K.Q.; Yang, W.; Hu, Y.; Gong, X.L. The influence of manganese–cobalt oxide/graphene on reducing firehazards of poly(butylene terephthalate). J. Hazard. Mater. 2014, 278, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Nazare, S.; Kandola, B.K.; Horrocks, A.R. Smoke, CO, and CO2 Measurements and Evaluationusing Different Fire Testing Techniques for Flame Retardant Unsaturated Polyester Resin Formulations. J. Fire Sci. 2008, 26, 215–242. [Google Scholar] [CrossRef]
- Guo, X.; Wang, H.; Ma, D.L.; He, J.N.; Lei, Z.Q. Synthesis of a novel, multifunctional inorganic curing agent and its effect on the flame-retardant and mechanical properties of intrinsically flame retardant epoxy resin. J. Appl. Polym. Sci. 2018, 135, 46410. [Google Scholar] [CrossRef]
- Zhang, J.L.; Li, G.Y.; Wu, Q.L.; Li, M.C.; Sun, X.X.; Ring, D. Synergistic influence of halogenated flame retardants and nanoclay on flame performance of high density polyethylene and wood flour composites. RSC Adv. 2017, 40, 24895–24902. [Google Scholar] [CrossRef]
- Babushok, V.; Deglmann, P.; Krämer, R.; Linteris, G.T. Influence of Antimony-Halogen Additives on Flame Propagation. Combust. Sci. Technol. 2017, 189, 290–311. [Google Scholar] [CrossRef] [PubMed]
- Gallo, E.; Schartel, B.; Acierno, D.; Russo, P. Flame retardant biocomposites: Synergism between phosphinate and nanometric metal oxides. Eur. Polym. J. 2011, 47, 1390–1401. [Google Scholar] [CrossRef]
Sample No. | PBT | BEO | Nano-Sb2O3 |
---|---|---|---|
Neat PBT | 100 | 0 | 0 |
PBT/BEO/nano-Sb2O3 1% | 83 | 16 | 1 |
PBT/BEO/nano-Sb2O3 3% | 81 | 16 | 3 |
PBT/BEO/nano-Sb2O3 5% | 79 | 16 | 5 |
Sample No. | Tonset (°C) | Tc (°C) | Tonset-Tc/°C | ∆Hm (J·g−1) | NE (%) | Xc (%) |
---|---|---|---|---|---|---|
Neat PBT | 204.3 | 195.2 | 9.1 | 31.6 | 0 | 22.6 |
PBT/BEO/nano-Sb2O3 1% | 205.9 | 199.7 | 6.2 | 31.9 | 49.5 | 27.5 |
PBT/BEO/nano-Sb2O3 3% | 211.1 | 202.6 | 8.5 | 34.7 | 81.3 | 30.6 |
PBT/BEO/nano-Sb2O3 5% | 213.1 | 203.4 | 9.7 | 29.6 | 90.1 | 26.8 |
Sample No. | Tensile Strength (MPa) | Young’s Modulus (GPa) |
---|---|---|
Neat PBT | 54.6 ± 0.5 | 1.8 ± 0.1 |
PBT/BEO/nano-Sb2O3 1% | 61.1 ± 0.8 | 2.1 ± 0.1 |
PBT/BEO/nano-Sb2O3 3% | 61.7 ± 0.7 | 2.3 ± 0.1 |
PBT/BEO/nano-Sb2O3 5% | 58.5 ± 0.7 | 2.2 ± 0.1 |
Sample No. | T10% (°C) | TPeak% (°C) | Char at 600 °C (%) |
---|---|---|---|
Neat PBT | 372 | 407 | 1.1 |
PBT/BEO/nano-Sb2O3 1% | 355 | 396 | 2.9 |
PBT/BEO/nano-Sb2O3 3% (experimental) | 357 | 391 | 11.8 |
PBT/BEO/nano-Sb2O3 3% (calculated) | 353 | 401 | 8.0 |
PBT/BEO/nano-Sb2O3 5% | 356 | 397 | 10.1 |
Sample No. | TTI (s) | HRR (kW/m2) | PHRR (kW/m2) | THR (MJ/m2) | PSPR (m2/s) | TSP (m2/kg) | PCO2P (kg/kg) | PCOP (kg/kg) | Residue (wt %) |
---|---|---|---|---|---|---|---|---|---|
Error | ±2 | ±10 | ±10 | ±1 | ±0.01 | ±30 | ±0.01 | ±0.002 | ±0.5 |
Neat PBT | 36 | 375.1 | 917.5 (451 s) a | 265.6 | 0.073 | 342 | 18.91 | 1.058 | 3.6 |
PBT/BEO/nano-Sb2O3 1% | 25 | 203.2 | 289.0 (789 s) a | 189.4 | 0.210 | 662 | 6.48 | 0.683 | 7.7 |
PBT/BEO/nano-Sb2O3 3% | 22 | 161.1 | 224.5 (841 s) a | 154.2 | 0.241 | 691 | 6.06 | 0.965 | 11.3 |
PBT/BEO/nano-Sb2O3 5% | 20 | 159.4 | 230.6 (616 s) a | 149.5 | 0.330 | 698 | 4.41 | 0.951 | 10.5 |
Sample No. | Element Content (wt %) | ||
---|---|---|---|
C | O | Sb | |
Neat PBT | 95.69 | 4.31 | 0 |
PBT/BEO/Sb2O3 1% | 95.91 | 4.09 | 0 |
PBT/BEO/Sb2O3 3% | 100 | 0 | 0 |
PBT/BEO/Sb2O3 5% | 100 | 0 | 0 |
Sample | LOI (%) | UL94, 4.0 mm Bar | ||
---|---|---|---|---|
t1/t2 a (s) | Dripping | Rating | ||
Neat PBT | 21.8 ± 1 | BC b | Yes | NR c |
PBT/BEO/nano-Sb2O3 1% | 24.6 ± 1 | 11.7/13.8 | No | V-1 |
PBT/BEO/nano-Sb2O33% | 27.8 ± 1 | 5.1/7.6 | No | V-0 |
PBT/BEO/nano-Sb2O3 5% | 28.7 ± 1 | 3.8/5.6 | No | V-0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, L.; Xu, J.; Yang, W.; Ma, J.; Zhao, J.; Kang, C.; Su, J. Study on the Synergetic Fire-Retardant Effect of Nano-Sb2O3 in PBT Matrix. Materials 2018, 11, 1060. https://doi.org/10.3390/ma11071060
Niu L, Xu J, Yang W, Ma J, Zhao J, Kang C, Su J. Study on the Synergetic Fire-Retardant Effect of Nano-Sb2O3 in PBT Matrix. Materials. 2018; 11(7):1060. https://doi.org/10.3390/ma11071060
Chicago/Turabian StyleNiu, Lei, Jianlin Xu, Wenlong Yang, Jiqiang Ma, Jinqiang Zhao, Chenghu Kang, and Jiaqiang Su. 2018. "Study on the Synergetic Fire-Retardant Effect of Nano-Sb2O3 in PBT Matrix" Materials 11, no. 7: 1060. https://doi.org/10.3390/ma11071060
APA StyleNiu, L., Xu, J., Yang, W., Ma, J., Zhao, J., Kang, C., & Su, J. (2018). Study on the Synergetic Fire-Retardant Effect of Nano-Sb2O3 in PBT Matrix. Materials, 11(7), 1060. https://doi.org/10.3390/ma11071060